数学分析笔记14:多元函数微分学

偏导数与全微分

偏导数与全微分的概念

现在,我们把导数和微分的概念,推广到多元函数的情形。只不过,在二维以上,函数的方向十分复杂,绝不只有左导数和右导数两个方向。然而,我们可以先对某个变元求导数,称为偏导数。

定义14.1(偏导数) f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)的某个邻域上有定义,如果对第 i ( 1 ≤ i ≤ n ) i(1\le i \le n) i(1in)的变元,极限
lim ⁡ Δ x i → 0 f ( x 1 0 , ⋯   , x i − 1 0 , x i , x i + 1 0 , ⋯   , x n 0 ) − f ( x 1 0 , ⋯   , x n 0 ) Δ x i \lim_{\Delta x_i\to 0}{\frac{f(x_1^0,\cdots,x_{i-1}^0,x_i,x_{i+1}^0,\cdots,x_n^0)-f(x_1^0,\cdots,x_n^0)}{\Delta x_i}} Δxi0limΔxif(x10,,xi10,xi,xi+10,,xn0)f(x10,,xn0)存在,称该极限为 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处对 x i x_i xi的偏导数,\记为 ∂ f ( x 1 0 , ⋯   , x n 0 ) ∂ x i \frac{\partial f(x_1^0,\cdots,x_n^0)}{\partial x_i} xif(x10,,xn0) f i ( x 1 0 , ⋯   , x n 0 ) f_i(x_1^0,\cdots,x_n^0) fi(x10,,xn0)

如果 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn)在某个开集 E E E上每个点对所有变元的偏导数都存在,那么,对各个变元的偏导数,都是这个开集上的一个 n n n元函数,同样可以讨论极限、连续性的等概念。
我们再一元函数上还有微分的概念,在一元函数上,全微分定义成某点的"切线",在二元函数上,全微分就应该是某点的切平面,在三维以上,就是切“超平面”,只不过,这时我们没有几何直观可以参考。
一维上的直线可以表为 y = a + b x y=a+bx y=a+bx
二维上的平面可表为 y = a + b 1 x + b 2 x y=a+b_1x+b_2x y=a+b1x+b2x
推广到 n n n维上,超平面可表为 y = a + ∑ k = 1 n b k x k y=a+\sum_{k=1}^{n}{b_kx_k} y=a+k=1nbkxk
所谓全微分,就是在函数在某点附近,可以用一个超平面近似,即:
f ( x ) = f ( x 0 ) + ∑ k = 1 n b k Δ x k + o ( ∣ ∣ Δ x ∣ ∣ ) f(x)=f(x_0)+\sum_{k=1}^n{b_k\Delta x_k}+o(||\Delta x||) f(x)=f(x0)+k=1nbkΔxk+o(Δx)

定义14.2(全微分) f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) x 0 = ( x 1 0 , ⋯   , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) x0=(x10,,xn0)的某个邻域上有定义,如果 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn)可表为
f ( x 1 , ⋯   , x n ) = f ( x 1 0 , ⋯   , x n 0 ) + ∑ k = 1 n A k ( x k − x k 0 ) + o ( ∣ ∣ x − x 0 ∣ ∣ ) f(x_1,\cdots,x_n)=f(x_1^0,\cdots,x_n^0)+\sum_{k=1}^n{A_k(x_k-x_k^0)}+ o(||x-x_0||) f(x1,,xn)=f(x10,,xn0)+k=1nAk(xkxk0)+o(xx0)其中 A 1 , ⋯   , A n A_1,\cdots,A_n A1,,An Δ x = x − x 0 \Delta x = x-x_0 Δx=xx0无关,则称 f ( x ) f(x) f(x) x 0 x_0 x0处可微,超平面 ∑ k = 1 n A k d x k \sum_{k=1}^n{A_kdx_k} k=1nAkdxk称为 f ( x ) f(x) f(x) x 0 x_0 x0处的全微分,记为 d f = ∑ k = 1 n A k d x k df = \sum_{k=1}^n{A_kdx_k} df=k=1nAkdxk

定理14.1(可微的必要条件) f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) x 0 = ( x 1 0 , ⋯   , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) x0=(x10,,xn0)的某个邻域上有定义, f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) x 0 = ( x 1 0 , ⋯   , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) x0=(x10,,xn0)上可微,则 f f f x 0 = ( x 1 0 , ⋯   , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) x0=(x10,,xn0)对各变元可求偏导,并且:
d f = ∑ k = 1 n f k ( x 1 0 , ⋯   , x n 0 ) d x k df = \sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)dx_k} df=k=1nfk(x10,,xn0)dxk

这由全微分的定义可以直接验证。其次,容易验证可微必连续。但就算n元函数在某点对各变元可求偏导且连续,也不一定可微。

例14.1 f ( x , y ) = { x y x 2 + y 2 x 2 + y 2 > 0 0 x = 0 , y = 0 f(x,y)= \begin{cases} \frac{xy}{\sqrt{x^2+y^2}}&x^2+y^2>0\\ 0&x=0,y=0 \end{cases} f(x,y)={x2+y2 xy0x2+y2>0x=0,y=0 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)处连续且对各变元可求偏导,然而: lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) x 2 + y 2 = lim ⁡ ( x , y ) → ( 0 , 0 ) x y x 2 + y 2 \lim_{(x,y)\to(0,0)}{\frac{f(x,y)}{\sqrt{x^2+y^2}}} =\lim_{(x,y)\to(0,0)}{\frac{xy}{x^2+y^2}} (x,y)(0,0)limx2+y2 f(x,y)=(x,y)(0,0)limx2+y2xy极限不存在,因此, f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点不可微

那么,满足何种条件能够可微呢?下面我们给出一个充分条件:

定理14.2(可微的充分条件) f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) x 0 = ( x 1 0 , ⋯   , x n 0 ) x_0=(x_1^0,\cdots,x_n^0) x0=(x10,,xn0)的某个邻域上有定义且对各变元可求偏导,并且各偏导在 x 0 x_0 x0处连续,则 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) x 0 x_0 x0处可微

证:
f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) = f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) + ∑ k = 1 n − 1 ( − f ( x 1 0 , ⋯   , x k 0 , x k + 1 , ⋯   , x n ) + f ( x 1 0 , ⋯   , x k 0 , x k + 1 , ⋯   , x n ) ) = ∑ k = 1 n [ f ( x 1 0 , ⋯   , x k − 1 0 , x k , x k + 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x k 0 , x k + 1 , ⋯   , x n ) ] f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0) =f(x_1,\cdots,x_n)-\\f(x_1^0,\cdots,x_n^0)+\sum_{k=1}^{n-1}{( -f(x_1^0,\cdots,x_k^0,x_{k+1},\cdots,x_n) +f(x_1^0,\cdots,x_k^0,x_{k+1},\cdots,x_n))}\\ =\sum_{k=1}^n{[f(x_1^0,\cdots,x_{k-1}^0,x_k,x_{k+1},\cdots,x_n) -f(x_1^0,\cdots,x_k^0,x_{k+1},\cdots,x_n)]} f(x1,,xn)f(x10,,xn0)=f(x1,,xn)f(x10,,xn0)+k=1n1(f(x10,,xk0,xk+1,,xn)+f(x10,,xk0,xk+1,,xn))=k=1n[f(x10,,xk10,xk,xk+1,,xn)f(x10,,xk0,xk+1,,xn)] 由拉格朗日中值定理,存在 ξ k \xi_k ξk介于 x k x_k xk x k 0 x_k^0 xk0之间 f ( x 1 , ⋯   , x n ) = f ( x 1 0 , ⋯   , x n 0 ) + ∑ k = 1 n f k ( x 1 0 , ⋯   , x k − 1 0 , ξ k , x k + 1 , ⋯   , x n ) Δ x k = ∑ k = 1 n f k ( x 1 0 , ⋯   , x n 0 ) Δ x k + ∑ k = 1 n [ f k ( x 1 0 , ⋯   , x k − 1 0 , ξ k , x k + 1 , ⋯   , x n ) − f k ( x 1 0 , ⋯   , x n 0 ) ] Δ x k f(x_1,\cdots,x_n)=f(x_1^0,\cdots,x_n^0) +\sum_{k=1}^n{f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)\Delta x_k}\\ =\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k} +\sum_{k=1}^n[f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)-f_k(x_1^0,\cdots,x_n^0)]\Delta x_k f(x1,,xn)=f(x10,,xn0)+k=1nfk(x10,,xk10,ξk,xk+1,,xn)Δxk=k=1nfk(x10,,xn0)Δxk+k=1n[fk(x10,,xk10,ξk,xk+1,,xn)fk(x10,,xn0)]Δxk考察余项: f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) − ∑ k = 1 n f k ( x 1 0 , ⋯   , x n 0 ) Δ x k ∑ k = 1 n Δ 2 x k = ∑ k = 1 n [ f k ( x 1 0 , ⋯   , x k − 1 0 , ξ k , x k + 1 , ⋯   , x n ) − f k ( x 1 0 , ⋯   , x n 0 ) ] Δ x k ∑ i = 1 n Δ 2 x i \frac{f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)-\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k}}{\sqrt{\sum_{k=1}^n{\Delta^2 x_k}}}\\ =\sum_{k=1}^n[f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)-f_k(x_1^0,\cdots,x_n^0)]\frac{\Delta x_k}{\sqrt{\sum_{i=1}^n\Delta^2 x_i}} k=1nΔ2xk f(x1,,xn)f(x10,,xn0)k=1nfk(x10,,xn0)Δxk=k=1n[fk(x10,,xk10,ξk,xk+1,,xn)fk(x10,,xn0)]i=1nΔ2xi Δxk ∣ Δ x k ∑ i = 1 n Δ 2 x i ∣ ≤ 1 |\frac{\Delta x_k}{\sqrt{\sum_{i=1}^n\Delta^2 x_i}}|\le 1 i=1nΔ2xi Δxk1因此: ∣ f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) − ∑ k = 1 n f k ( x 1 0 , ⋯   , x n 0 ) Δ x k ∑ k = 1 n Δ 2 x k ∣ ≤ ∑ k = 1 n ∣ f k ( x 1 0 , ⋯   , x k − 1 0 , ξ k , x k + 1 , ⋯   , x n ) − f k ( x 1 0 , ⋯   , x n 0 ) ∣ |\frac{f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)-\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k}}{\sqrt{\sum_{k=1}^n{\Delta^2 x_k}}}|\\ \le \sum_{k=1}^n|f_k(x_1^0,\cdots,x_{k-1}^0,\xi_k,x_{k+1},\cdots,x_n)-f_k(x_1^0,\cdots,x_n^0)| k=1nΔ2xk f(x1,,xn)f(x10,,xn0)k=1nfk(x10,,xn0)Δxkk=1nfk(x10,,xk10,ξk,xk+1,,xn)fk(x10,,xn0)再由偏导数的连续性,就有 lim ⁡ ( x 1 , ⋯   , x n ) → ( x 1 0 , ⋯   , x n 0 ) ∣ f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) − ∑ k = 1 n f k ( x 1 0 , ⋯   , x n 0 ) Δ x k ∑ k = 1 n Δ 2 x k ∣ = 0 \lim_{(x_1,\cdots,x_n)\to(x_1^0,\cdots,x_n^0)}{|\frac{f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)-\sum_{k=1}^n{f_k(x_1^0,\cdots,x_n^0)\Delta x_k}}{\sqrt{\sum_{k=1}^n{\Delta^2 x_k}}}|}=0 (x1,,xn)(x10,,xn0)limk=1nΔ2xk f(x1,,xn)f(x10,,xn0)k=1nfk(x10,,xn0)Δxk=0因此, f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微

我们把偏导数连续称为连续可微。这样,可微、可导和连续性的关系可以概括为:
(1)连续可微一定可微
(2)可微一定可求偏导数
(3)可微一定连续
(4)连续不一定可求偏导
(5)可求偏导不一定可微

多元函数微分法则

为了给出多元情形下的求导和微分法则,我们首先给出向量值函数的全微分概念

定义14.3 g ( x 1 , x 2 , ⋯   , x n ) = ( g 1 ( x 1 , ⋯   , x n ) , ⋯   , g m ( x 1 , ⋯   , x n ) ) g(x_1,x_2,\cdots,x_n)=(g_1(x_1,\cdots,x_n),\cdots,g_m(x_1,\cdots,x_n)) g(x1,x2,,xn)=(g1(x1,,xn),,gm(x1,,xn)) n n n m m m维向量值函数,在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)附近有定义,如果存在与 ( x 1 , ⋯   , x n ) (x_1,\cdots,x_n) (x1,,xn)无关,仅与 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)有关的 m m m n n n列矩阵 A A A,记 Δ x = ( x 1 − x 1 0 , ⋯   , x n − x n 0 ) T \Delta x = (x_1-x_1^0,\cdots,x_n-x_n^0)^T Δx=(x1x10,,xnxn0)T,使得 [ g 1 ( x 1 , ⋯   , x n ) − g 1 ( x 1 0 , ⋯   , x n 0 ) ⋯ g m ( x 1 , ⋯   , x n ) − g m ( x 1 0 , ⋯   , x n 0 ) ] = A Δ x + [ o 1 ( ∣ ∣ Δ x ∣ ∣ ) ⋯ o m ( ∣ ∣ Δ x ∣ ∣ ) ] \left[\begin{matrix} g_1(x_1,\cdots,x_n)-g_1(x_1^0,\cdots,x_n^0)\\ \cdots\\ g_m(x_1,\cdots,x_n)-g_m(x_1^0,\cdots,x_n^0) \end{matrix}\right] =A\Delta x + \left[ \begin{matrix} o_1(||\Delta x||)\\ \cdots\\ o_m(||\Delta x||) \end{matrix} \right] g1(x1,,xn)g1(x10,,xn0)gm(x1,,xn)gm(x10,,xn0)=AΔx+o1(Δx)om(Δx)则称向量值函数 g g g ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,矩阵 A A A称为 g g g ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处的Frechet导数。 A d x Adx Adx称为 g g g ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处的全微分。

实际上,由定义容易得出,如果向量值函数在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微的充要条件是每个分量函数都在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,并且,Frechet导数就等于:
[ ∂ g 1 ( x 1 0 , ⋯   , x n 0 ) ∂ x 1 ⋯ ∂ g 1 ( x 1 0 , ⋯   , x n 0 ) ∂ x n ⋯ ⋯ ⋯ ∂ g m ( x 1 0 , ⋯   , x n 0 ) ∂ x 1 ⋯ ∂ g m ( x 1 0 , ⋯   , x n 0 ) ∂ x n ] \left[\begin{matrix} \frac{\partial g_1(x_1^0,\cdots,x_n^0)}{\partial x_1}&\cdots&\frac{\partial g_1(x_1^0,\cdots,x_n^0)}{\partial x_n}\\ \cdots&\cdots&\cdots\\ \frac{\partial g_m(x_1^0,\cdots,x_n^0)}{\partial x_1}&\cdots&\frac{\partial g_m(x_1^0,\cdots,x_n^0)}{\partial x_n} \end{matrix}\right] x1g1(x10,,xn0)x1gm(x10,,xn0)xng1(x10,,xn0)xngm(x10,,xn0)为了方便,我们把Frechet导数记为 g ′ ( x 0 ) g^\prime(x_0) g(x0),对 n n n元函数来说,Frechet导数就是 n n n维的行向量。实际上,Frechet导数就是一元导数的的一个推广,Frechet可导就等价于可微,在这层意义下,可微和可导是等价的。

定理14.3(线性性质) g 1 , g 2 g_1,g_2 g1,g2 n n n m m m维向量值函数并且都在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,则
(1) g 1 + g 2 g_1+g_2 g1+g2 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,并且
g 1 ′ ( x 1 0 , ⋯   , x n 0 ) + g 2 ′ ( x 1 0 , ⋯   , x n 0 ) = ( g 1 + g 2 ) ′ ( x 1 0 , ⋯   , x n 0 ) g_1^\prime(x_1^0,\cdots,x_n^0)+g_2^\prime(x_1^0,\cdots,x_n^0) =(g_1+g_2)^\prime(x_1^0,\cdots,x_n^0) g1(x10,,xn0)+g2(x10,,xn0)=(g1+g2)(x10,,xn0)(2) c c c是任意实数, c g 1 cg_1 cg1 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,并且
c g 1 ′ ( x 1 0 , ⋯   , x n 0 ) = ( c g 1 ) ′ ( x 1 0 , ⋯   , x n 0 ) cg_1^\prime(x_1^0,\cdots,x_n^0) = (cg_1)^\prime(x_1^0,\cdots,x_n^0) cg1(x10,,xn0)=(cg1)(x10,,xn0)

这两个性质按照Frechet导数的定义是显然的。

定理14.4 g g g n n n m m m维向量值函数,并且在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微, f f f n n n元函数,并且在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,则 F = g ( x 1 , ⋯   , x n ) f ( x 1 , ⋯   , x n ) F=g(x_1,\cdots,x_n)f(x_1,\cdots,x_n) F=g(x1,,xn)f(x1,,xn) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,并且
F ′ ( x 1 0 , ⋯   , x n 0 ) = g ( x 1 0 , ⋯   , x n 0 ) f ′ ( x 1 0 , ⋯   , x n 0 ) + g ′ ( x 1 0 , ⋯   , x n 0 ) f ( x 1 0 , ⋯   , x n 0 ) F^\prime(x_1^0,\cdots,x_n^0)=g(x_1^0,\cdots,x_n^0)f^\prime(x_1^0,\cdots,x_n^0) +g^\prime(x_1^0,\cdots,x_n^0)f(x_1^0,\cdots,x_n^0) F(x10,,xn0)=g(x10,,xn0)f(x10,,xn0)+g(x10,,xn0)f(x10,,xn0)

在理解定理14.4时,需要注意的是 f g fg fg n n n m m m维向量值函数,其Frechet导数是 m m m n n n列矩阵,等式右边第一项中: g g g m m m行的列向量, f ′ f^\prime f n n n列的行向量,而第二项是一个数乘的形式。通过定理14.4,多元导数就和一元导数在乘法运算法则上统一起来了。下面证明定理14.4

证:
首先 g ( x 1 , ⋯   , x n ) f ( x 1 , ⋯   , x n ) − g ( x 1 0 , ⋯   , x n 0 ) f ( x 1 0 , ⋯   , x n 0 ) = g ( x 1 , ⋯   , x n ) f ( x 1 , ⋯   , x n ) − g ( x 1 0 , ⋯   , x n 0 ) f ( x 1 , ⋯   , x n ) + g ( x 1 0 , ⋯   , x n 0 ) f ( x 1 , ⋯   , x n ) − g ( x 1 0 , ⋯   , x n 0 ) f ( x 1 0 , ⋯   , x n 0 ) g(x_1,\cdots,x_n)f(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0) f(x_1^0,\cdots,x_n^0)\\ =g(x_1,\cdots,x_n)f(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0)f(x_1,\cdots,x_n)\\ +g(x_1^0,\cdots,x_n^0)f(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0) f(x_1^0,\cdots,x_n^0) g(x1,,xn)f(x1,,xn)g(x10,,xn0)f(x10,,xn0)=g(x1,,xn)f(x1,,xn)g(x10,,xn0)f(x1,,xn)+g(x10,,xn0)f(x1,,xn)g(x10,,xn0)f(x10,,xn0)其次,由可微性,就有 g ( x 1 , ⋯   , x n ) − g ( x 1 0 , ⋯   , x n 0 ) = g ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 1 ( ∣ ∣ Δ x ∣ ∣ ) g(x_1,\cdots,x_n)-g(x_1^0,\cdots,x_n^0)= g^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_1(||\Delta x||) g(x1,,xn)g(x10,,xn0)=g(x10,,xn0)Δx+o1(Δx) f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) = f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 2 ( ∣ ∣ Δ x ∣ ∣ ) f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)= f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||) f(x1,,xn)f(x10,,xn0)=f(x10,,xn0)Δx+o2(Δx)再令 h ( x 1 , ⋯   , x n ) = f ( x 1 , ⋯   , x n ) o 1 ( ∣ ∣ Δ x ∣ ∣ ) + [ f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) ] Δ x + g ( x 1 0 , ⋯   , x n 0 ) o 2 ( ∣ ∣ Δ x ∣ ∣ ) h(x_1,\cdots,x_n)=f(x_1,\cdots,x_n)o_1(||\Delta x||) \\+[f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)]\Delta x +g(x_1^0,\cdots,x_n^0)o_2(||\Delta x||) h(x1,,xn)=f(x1,,xn)o1(Δx)+[f(x1,,xn)f(x10,,xn0)]Δx+g(x10,,xn0)o2(Δx)由于 ∣ Δ x k ∣ ∣ Δ x ∣ ∣ ∣ ≤ 1 |\frac{\Delta x_k}{||\Delta x||}|\le 1 ΔxΔxk1再由 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn)
( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处的连续性,就有 lim ⁡ ∣ ∣ Δ x ∣ ∣ → 0 [ f ( x 1 , ⋯   , x n ) − f ( x 1 0 , ⋯   , x n 0 ) ] Δ x ∣ ∣ Δ x ∣ ∣ = 0 \lim_{||\Delta x|| \to 0}{\frac{[f(x_1,\cdots,x_n)-f(x_1^0,\cdots,x_n^0)]\Delta x}{||\Delta x||}}=0 Δx0limΔx[f(x1,,xn)f(x10,,xn0)]Δx=0因此 lim ⁡ ∣ ∣ Δ x ∣ ∣ → 0 h ( x 1 , ⋯   , x n ) ∣ ∣ Δ x ∣ ∣ = 0 \lim_{||\Delta x|| \to 0}{\frac{h(x_1,\cdots,x_n)}{||\Delta x||}}=0 Δx0limΔxh(x1,,xn)=0 F ( x 1 , ⋯   , x n ) − F ( x 1 0 , ⋯   , x n 0 ) = [ g ( x 1 0 , ⋯   , x n 0 ) f ′ ( x 1 0 , ⋯   , x n 0 ) + g ′ ( x 1 0 , ⋯   , x n 0 ) f ( x 1 0 , ⋯   , x n 0 ) ] Δ x + h ( x 1 , ⋯   , x n ) F(x_1,\cdots,x_n)-F(x_1^0,\cdots,x_n^0)=[g(x_1^0,\cdots,x_n^0)f^\prime(x_1^0,\cdots,x_n^0) \\+g^\prime(x_1^0,\cdots,x_n^0)f(x_1^0,\cdots,x_n^0)]\Delta x + h(x_1,\cdots,x_n) F(x1,,xn)F(x10,,xn0)=[g(x10,,xn0)f(x10,,xn0)+g(x10,,xn0)f(x10,,xn0)]Δx+h(x1,,xn)

接下来我们给出多元下的复合函数求导法则:

定理14.5 f f f n n n m m m维向量函数,在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可导, ( y 1 0 , ⋯   , y m 0 ) = f ( x 1 0 , ⋯   , x n 0 ) (y_1^0,\cdots,y_m^0)=f(x_1^0,\cdots,x_n^0) (y10,,ym0)=f(x10,,xn0), g g g m m m k k k维向量函数,在 ( y 1 0 , ⋯   , y m 0 ) (y_1^0,\cdots,y_m^0) (y10,,ym0)处可导,则 f ( g ( x 1 , ⋯   , x n ) ) f(g(x_1,\cdots,x_n)) f(g(x1,,xn)) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可导,并且
( g ( f ( x 1 0 , ⋯   , x n 0 ) ) ) ′ = g ′ ( f ( x 1 0 , ⋯   , x n 0 ) ) f ′ ( x 1 0 , ⋯   , x n 0 ) (g(f(x_1^0,\cdots,x_n^0)))^\prime = g^\prime(f(x_1^0,\cdots,x_n^0))f^\prime(x_1^0,\cdots,x_n^0) (g(f(x10,,xn0)))=g(f(x10,,xn0))f(x10,,xn0)

证:
g g g ( y 1 0 , ⋯   , y m 0 ) (y_1^0,\cdots,y_m^0) (y10,,ym0)可微,则 g ( y 1 , ⋯   , y m ) − g ( y 1 0 , ⋯   , y m 0 ) = g ′ ( y 1 0 , ⋯   , y m 0 ) Δ y + o 1 ( ∣ ∣ Δ y ∣ ∣ ) (1) \tag{1} g(y_1,\cdots,y_m)-g(y_1^0,\cdots,y_m^0)=\\ g^\prime(y_1^0,\cdots,y_m^0)\Delta y + o_1(||\Delta y||) g(y1,,ym)g(y10,,ym0)=g(y10,,ym0)Δy+o1(Δy)(1)再由 f f f ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,则 f ( x 1 , ⋯   , x n ) − ( y 1 0 , ⋯   , y m 0 ) = f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 2 ( ∣ ∣ Δ x ∣ ∣ ) (2) \tag{2} f(x_1,\cdots,x_n)-(y_1^0,\cdots,y_m^0)= f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||) f(x1,,xn)(y10,,ym0)=f(x10,,xn0)Δx+o2(Δx)(2) ∣ ∣ f ( x 1 , ⋯   , x n ) − ( y 1 , ⋯   , y m ) ∣ ∣ ∣ ∣ Δ x ∣ ∣ = ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 2 ( ∣ ∣ Δ x ∣ ∣ ) ∣ ∣ Δ x ∣ ∣ ∣ ∣ \frac{||f(x_1,\cdots,x_n)-(y_1,\cdots,y_m)||}{||\Delta x||} =||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}|| Δxf(x1,,xn)(y1,,ym)=Δxf(x10,,xn0)Δx+o2(Δx)由范数的性质,有 ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 2 ( ∣ ∣ Δ x ∣ ∣ ) ∣ ∣ Δ x ∣ ∣ ∣ ∣ ≤ ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x ∣ ∣ Δ x ∣ ∣ ∣ ∣ + ∣ ∣ o 2 ( ∣ ∣ Δ x ∣ ∣ ) ∣ ∣ Δ x ∣ ∣ ∣ ∣ ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}|| \le ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x}{||\Delta x||}||+||\frac{o_2(||\Delta x||)}{||\Delta x||}|| Δxf(x10,,xn0)Δx+o2(Δx)Δxf(x10,,xn0)Δx+Δxo2(Δx) lim ⁡ ∣ ∣ Δ x ∣ ∣ → 0 o 2 ( ∣ ∣ Δ x ∣ ∣ ) ∣ ∣ Δ x ∣ ∣ = 0 \lim_{||\Delta x||\to 0}{\frac{o_2(||\Delta x||)}{||\Delta x||}} = 0 Δx0limΔxo2(Δx)=0同时设 f i j ( x 1 0 , ⋯   , x n 0 ) f_{ij}(x_1^0,\cdots,x_n^0) fij(x10,,xn0) f f f的第 i i i个分量对第 j j j个变元的偏导数,则 f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x = [ ∑ i = 1 n f 1 i ( x 1 0 , ⋯   , x n 0 ) Δ x i ⋯ ∑ i = 1 n f m i ( x 1 0 , ⋯   , x n 0 ) Δ x i ] f^\prime(x_1^0,\cdots,x_n^0)\Delta x= \left[ \begin{matrix} \sum_{i=1}^n{f_{1i}(x_1^0,\cdots,x_n^0)\Delta x_i}\\ \cdots\\ \sum_{i=1}^n{f_{mi}(x_1^0,\cdots,x_n^0)\Delta x_i} \end{matrix} \right] f(x10,,xn0)Δx=i=1nf1i(x10,,xn0)Δxii=1nfmi(x10,,xn0)Δxi对任意的 1 ≤ i ≤ m 1\le i \le m 1im,都要 ∣ ∑ j − 1 n f i j ( x 1 0 , ⋯   , x n 0 ) Δ x j ∣ ≤ ∑ j = 1 n f i j 2 ( x 1 0 , ⋯   , x n 0 ) ∣ ∣ Δ x ∣ ∣ |\sum_{j-1}^n f_{ij}(x_1^0,\cdots,x_n^0)\Delta x_j| \le \sqrt{\sum_{j=1}^n{f_{ij}^2(x_1^0,\cdots,x_n^0)}} ||\Delta x|| j1nfij(x10,,xn0)Δxjj=1nfij2(x10,,xn0) Δx因此 ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x ∣ ∣ ≤ ∑ i = 1 m ∑ j = 1 n f i j 2 ( x 1 0 , ⋯   , x n 0 ) ∣ ∣ Δ x ∣ ∣ ||f^\prime(x_1^0,\cdots,x_n^0)\Delta x|| \le \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}{f_{ij}^2(x_1^0,\cdots,x_n^0)}}||\Delta x|| f(x10,,xn0)Δxi=1mj=1nfij2(x10,,xn0) Δx ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x ∣ ∣ Δ x ∣ ∣ ∣ ∣ ≤ ∑ i = 1 m ∑ j = 1 n f i j 2 ( x 1 0 , ⋯   , x n 0 ) ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x}{||\Delta x||}|| \le \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}{f_{ij}^2(x_1^0,\cdots,x_n^0)}} Δxf(x10,,xn0)Δxi=1mj=1nfij2(x10,,xn0) 因此, ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 2 ( ∣ ∣ Δ x ∣ ∣ ) ∣ ∣ Δ x ∣ ∣ ∣ ∣ ||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}|| Δxf(x10,,xn0)Δx+o2(Δx)局部有界,因此 lim ⁡ ∣ ∣ Δ x ∣ ∣ → 0 ∣ ∣ f ′ ( x 1 0 , ⋯   , x n 0 ) Δ x + o 2 ( ∣ ∣ Δ x ∣ ∣ ) ∣ ∣ Δ x ∣ ∣ ∣ ∣ = 0 \lim_{||\Delta x||\to 0}{||\frac{f^\prime(x_1^0,\cdots,x_n^0)\Delta x + o_2(||\Delta x||)}{||\Delta x||}||}=0 Δx0limΔxf(x10,,xn0)Δx+o2(Δx)=0再将(2)代入(1)就可以证得结论

考虑向量函数和多元函数复合的情形: g ( y 1 , ⋯   , y m ) g(y_1,\cdots,y_m) g(y1,,ym) m m m元函数, f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn) n n n m m m维向量函数, g g g f ( x 1 0 , ⋯   , x n 0 ) f(x_1^0,\cdots,x_n^0) f(x10,,xn0)处可微, f f f ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微,那么 g ( f ( x 1 , ⋯   , x n ) ) g(f(x_1,\cdots,x_n)) g(f(x1,,xn)) ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)处可微。
我们记 h = g ( f ) h=g(f) h=g(f),设 f = ( f 1 , ⋯   , f m ) f=(f_1,\cdots,f_m) f=(f1,,fm),应用复合函数求导法则,就有: ∂ h ( x 1 0 , ⋯   , x n 0 ) ∂ x i = ∑ j = 1 m ∂ f j ( x 1 0 , ⋯   , x n 0 ) ∂ x i ∂ g ( y 1 0 , ⋯   , y m 0 ) ∂ y j \frac{\partial h(x_1^0,\cdots,x_n^0)}{\partial x_i} =\sum_{j=1}^m{\frac{\partial f_j(x_1^0,\cdots,x_n^0)}{\partial x_i} \frac{\partial g(y_1^0,\cdots,y_m^0)}{\partial y_j}} xih(x10,,xn0)=j=1mxifj(x10,,xn0)yjg(y10,,ym0)这称为多元函数求导的链式法则

高阶偏导数与高阶全微分

高阶偏导就是偏导的偏导,只不过,在高维情形下,由求偏导次序可否交换的问题。以二元函数为例, f ( x , y ) f(x,y) f(x,y)的二阶偏导有四个:
∂ 2 f ∂ x 2 \frac{\partial^2 f}{\partial x^2} x22f表示对 x x x求两次偏导, ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial x\partial y} xy2f表示先对 x x x求偏导,再对 y y y求偏导,其他两个也可以类似写出。
问题在于 ∂ 2 f ∂ x ∂ y = ∂ 2 f ∂ y ∂ x \frac{\partial^2 f}{\partial x\partial y}=\frac{\partial^2 f}{\partial y\partial x} xy2f=yx2f是否成立?下面我们证明:在高阶偏导数连续的条件下,偏导次序是可以交换的。

定理14.6 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某个邻域上可求二阶偏导数,并且 ∂ 2 f ∂ x ∂ y , ∂ 2 f ∂ y ∂ x \frac{\partial^2 f}{\partial x\partial y},\frac{\partial^2 f}{\partial y\partial x} xy2f,yx2f都在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则 ∂ 2 f ( x 0 , y 0 ) ∂ x ∂ y = ∂ 2 f ( x 0 , y 0 ) ∂ y ∂ x \frac{\partial^2 f(x_0,y_0)}{\partial x\partial y}= \frac{\partial^2 f(x_0,y_0)}{\partial y\partial x} xy2f(x0,y0)=yx2f(x0,y0)

证:
首先 [ f ( x , y ) − f ( x , y 0 ) ] − [ f ( x 0 , y ) − f ( x 0 , y 0 ) ] ( x − x 0 ) ( y − y 0 ) = [ f ( x , y ) − f ( x 0 , y ) ] − [ f ( x , y 0 ) − f ( x 0 , y 0 ) ] ( x − x 0 ) ( y − y 0 ) \frac{[f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} = \frac{[f(x,y)-f(x_0,y)]-[f(x,y_0)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} (xx0)(yy0)[f(x,y)f(x,y0)][f(x0,y)f(x0,y0)]=(xx0)(yy0)[f(x,y)f(x0,y)][f(x,y0)f(x0,y0)]由拉格朗日中值定理,存在 ( 0 , 1 ) (0,1) (0,1)之间的正实数 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2 [ f ( x , y ) − f ( x , y 0 ) ] − [ f ( x 0 , y ) − f ( x 0 , y 0 ) ] ( x − x 0 ) ( y − y 0 ) = f x ( x 0 + θ 1 ( x − x 0 ) , y ) − f x ( x 0 + θ 1 ( x − x 0 ) , y 0 ) y − y 0 = f x y ( x 0 + θ 1 ( x − x 0 ) , y 0 + θ 2 ( y − y 0 ) ) \frac{[f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} \\= \frac{ f_x(x_0+\theta_1(x-x_0),y)-f_x(x_0+\theta_1(x-x_0),y_0) }{y-y_0}\\=f_{xy}(x_0+\theta_1(x-x_0),y_0+\theta_2(y-y_0)) (xx0)(yy0)[f(x,y)f(x,y0)][f(x0,y)f(x0,y0)]=yy0fx(x0+θ1(xx0),y)fx(x0+θ1(xx0),y0)=fxy(x0+θ1(xx0),y0+θ2(yy0)) h ( x , y ) = [ f ( x , y ) − f ( x , y 0 ) ] − [ f ( x 0 , y ) − f ( x 0 , y 0 ) ] ( x − x 0 ) ( y − y 0 ) h(x,y)=\frac{[f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]}{(x-x_0)(y-y_0)} h(x,y)=(xx0)(yy0)[f(x,y)f(x,y0)][f(x0,y)f(x0,y0)] h ( x , y ) h(x,y) h(x,y)的全面极限和两个累次极限存在,相等,这样就可以证得偏导次序可交换

我们假设二元函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某个邻域上各阶偏导数都存在,那么,各阶偏导数都在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续(因为连续可微),考察函数: h ( t ) = f ( x 0 + t , y 0 + t ) h(t)=f(x_0+t,y_0+t) h(t)=f(x0+t,y0+t),则 h ( t ) h(t) h(t) t = 0 t=0 t=0处的各阶偏导数:
h ( k ) ( 0 ) = ∑ i = 0 k C k i ∂ k f ( x 0 , y 0 ) ∂ x i ∂ y ( k − i ) h^{(k)}(0)=\sum_{i=0}^{k}{C_k^i \frac{\partial^k f(x_0,y_0)}{\partial x^i \partial y^{(k-i)}}} h(k)(0)=i=0kCkixiy(ki)kf(x0,y0)这就和二项式定理类似,其他高阶导数的求法,大多用到数学归纳法,这里不再赘述。

方向导数

在一元情况下,导数有左导数和右导数,而在多元情形下,由于方向远远不止两个,但我们还是可以定义出方向导数。
方向向量就定义为 d = ( d 1 , ⋯   , d n ) d=(d_1,\cdots,d_n) d=(d1,,dn),其中 ∑ k = 1 n d k 2 = 1 \sqrt{\sum_{k=1}^n{d_k^2}}=1 k=1ndk2 =1 d d d就称为方向向量。方向导数就定义为极限:
∂ f ( x ) ∂ d = lim ⁡ t → 0 + f ( x + t d ) − f ( x ) t \frac{\partial f(x)}{\partial d}=\lim_{t\to 0^+}{\frac{f(x+td)-f(x)}{t}} df(x)=t0+limtf(x+td)f(x)方向导数该如何计算呢?如果 f ( x ) f(x) f(x) f ( x 0 ) f(x_0) f(x0)处可微,那么
f ( x 0 + t d ) − f ( x 0 ) = t f ′ ( x 0 ) d T + o ( t ) f(x_0+td)-f(x_0)=tf^\prime(x_0)d^T+o(t) f(x0+td)f(x0)=tf(x0)dT+o(t)这样
∂ f ( x 0 ) ∂ d = f ′ ( x 0 ) d T \frac{\partial f(x_0)}{\partial d} = f^\prime(x_0)d^T df(x0)=f(x0)dT实际上就是偏导按照方向进行加权。

高维泰勒公式

高维泰勒公式,就是 f ( x 0 + t ( x − x 0 ) ) f(x_0+t(x-x_0)) f(x0+t(xx0)) 0 0 0处的泰勒公式,再令 t = 1 t=1 t=1,高维泰勒公式形式比较复杂,在三阶以上很难写出一般的形式。不过,我们这里给出零阶,一阶,二阶的泰勒公式的形式,在多元函数极值判断中起到重要的作用。我们称矩阵 H f ( x 0 ) = [ f 11 ( x 0 ) f 12 ( x 0 ) ⋯ f 1 n ( x 0 ) f 21 ( x 0 ) f 22 ( x 0 ) ⋯ f 2 n ( x 0 ) ⋯ ⋯ ⋯ ⋯ f n 1 ( x 0 ) f n 2 ( x 0 ) ⋯ f n n ( x 0 ) ] H_f(x_0) = \left[ \begin{matrix} f_{11}(x_0)&f_{12}(x_0)&\cdots&f_{1n}(x_0)\\ f_{21}(x_0)&f_{22}(x_0)&\cdots&f_{2n}(x_0)\\ \cdots&\cdots&\cdots&\cdots\\ f_{n1}(x_0)&f_{n2}(x_0)&\cdots&f_{nn}(x_0) \end{matrix}\right] Hf(x0)=f11(x0)f21(x0)fn1(x0)f12(x0)f22(x0)fn2(x0)f1n(x0)f2n(x0)fnn(x0) f f f的海色矩阵,海色矩阵在多元函数情形下,起到二阶导数的作用。令 x = ( x 1 , ⋯   , x n ) , x 0 = ( x 1 0 , ⋯   , x n 0 ) x=(x_1,\cdots,x_n),x_0=(x_1^0,\cdots,x_n^0) x=(x1,,xn),x0=(x10,,xn0),令 g ( t ) = f ( x 0 + t ( x − x 0 ) ) g(t)=f(x_0+t(x-x_0)) g(t)=f(x0+t(xx0)),由复合函数求导法则,则 g ′ ( t ) = ∑ i = 1 n ( x i − x i 0 ) f i ′ ( x 0 + t ( x − x 0 ) ) g ′ ′ ( t ) = ∑ i = 1 n ∑ j = 1 n ( x i − x i 0 ) ( x j − x j 0 ) f i j ′ ′ ( x 0 + t ( x − x 0 ) ) g^\prime(t)=\sum_{i=1}^n(x_i-x_i^0)f_i^\prime(x_0+t(x-x_0))\\ g^{\prime\prime}(t)=\sum_{i=1}^n\sum_{j=1}^n(x_i-x_i^0)(x_j-x_j^0)f_{ij}^{\prime\prime}(x_0+t(x-x_0)) g(t)=i=1n(xixi0)fi(x0+t(xx0))g(t)=i=1nj=1n(xixi0)(xjxj0)fij(x0+t(xx0)) g ( t ) g(t) g(t)的零阶麦克劳林公式为 g ( t ) − g ( 0 ) = ∑ i = 1 n ( x i − x i 0 ) f i ′ ( x 0 + ξ ( x − x 0 ) ) t g(t)-g(0)=\sum_{i=1}^n(x_i-x_i^0)f_i^\prime(x_0+\xi(x-x_0))t g(t)g(0)=i=1n(xixi0)fi(x0+ξ(xx0))t其中 ξ ∈ ( 0 , t ) \xi\in(0,t) ξ(0,t),令 t = 1 t=1 t=1,有 f ( x ) − f ( x 0 ) = ∑ i = 1 n f i ′ ( x 0 + ξ ( x − x 0 ) ) ( x i − x i 0 ) f(x)-f(x_0)=\sum_{i=1}^nf_i^\prime(x_0+\xi(x-x_0))(x_i-x_i^0) f(x)f(x0)=i=1nfi(x0+ξ(xx0))(xixi0)其中 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),可以看出 x ′ = x 0 + ξ ( x − x 0 ) x^\prime=x_0+\xi(x-x_0) x=x0+ξ(xx0)是连接 x 0 x_0 x0 x x x的线段上的一点,也就是说,如果 f f f连续可微,则对任意的 x 1 , x 2 x_1,x_2 x1,x2,存在连接 x 1 , x 2 x_1,x_2 x1,x2连段上的一点 x 3 x_3 x3,使得 f ( x 1 ) − f ( x 2 ) = ∑ i = 1 n f i ′ ( x 3 ) ( x i 1 − x i 2 ) f(x_1)-f(x_2)=\sum_{i=1}^nf_i^\prime(x_3)(x_i^1-x_i^2) f(x1)f(x2)=i=1nfi(x3)(xi1xi2)这就是 n n n维空间上的拉格朗日中值定理,同样可以写出一阶的泰勒公式 f ( x ) − f ( x 0 ) = ∑ i = 1 n f i ′ ( x 0 ) ( x i − x i 0 ) + 1 2 ( x − x 0 ) T H f ( x 0 + ξ ( x − x 0 ) ) ( x − x 0 ) f(x)-f(x_0)=\sum_{i=1}^nf_i^\prime(x_0)(x_i-x_i^0)+\frac{1}{2}(x-x_0)^TH_f(x_0+\xi(x-x_0))(x-x_0) f(x)f(x0)=i=1nfi(x0)(xixi0)+21(xx0)THf(x0+ξ(xx0))(xx0)二阶泰勒公式为
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ( x − x 0 ) T H f ( x 0 ) ( x − x 0 ) + o ( ( x − x 0 ) T ( x − x 0 ) ) f(x) = f(x_0)+f^\prime(x_0)(x-x_0)+\frac{1}{2}(x-x_0)^T H_f(x_0)(x-x_0) + o((x-x_0)^T(x-x_0)) f(x)=f(x0)+f(x0)(xx0)+21(xx0)THf(x0)(xx0)+o((xx0)T(xx0))

隐函数存在定理

单个方程情形

现在,我们来讨论多元微分学最重要的定理之一,隐函数存在定理。实际上,函数,可由显方程给出,即:
y = f ( x 1 , ⋯   , x n ) y=f(x_1,\cdots,x_n) y=f(x1,,xn)然而,更多情况下,函数并没有以上明确的表达式,而是通常以方程的形式给出
F ( y , x 1 , ⋯   , x n ) = 0 F(y,x_1,\cdots,x_n)=0 F(y,x1,,xn)=0这种形式给出的函数,我们称为隐函数,并且,很多情况下,我们根本无法从隐函数方程反解出一个函数出来,那么,我们怎么确认是否存在一个函数,满足以上方程呢?隐函数存在定理,就是要回答上面的问题。首先我们需要理清概念,何谓隐含函数:对 n + 1 n+1 n+1元函数 F ( x 1 , ⋯   , x n , y ) F(x_1,\cdots,x_n,y) F(x1,,xn,y),方程 F ( x 1 , ⋯   , x n , y ) = 0 F(x_1,\cdots,x_n,y)=0 F(x1,,xn,y)=0确定一个隐函数 y = f ( x 1 , ⋯   , x n ) y=f(x_1,\cdots,x_n) y=f(x1,,xn)的含义的是对定义域 E ⊂ R n E\subset R^n ERn上的点 x ∈ E x\in E xE,都有 F ( x , f ( x ) ) = 0 F(x,f(x))=0 F(x,f(x))=0首先要弄清楚的问题是函数 f f f是否存在,其次是否唯一。举一例说明:
x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1在定义域 [ − 1 , 1 ] [-1,1] [1,1]上确实存在隐函数 y = 1 − x 2 y=\sqrt{1-x^2} y=1x2 y = − 1 − x 2 y=-\sqrt{1-x^2} y=1x2 可见,隐函数虽然存在,但是不唯一,两个隐函数的区别在于其值域。可见,在隐函数的问题上,不仅要指定在哪个定义域范围内存在隐函数, 还 要 确 定 因 变 量 的 范 围 ‾ \underline{还要确定因变量的范围} ,否则隐函数可能不唯一。
我们先假设隐函数存在,并且, F F F对各个变元可求连续偏导,并且隐函数也对各个变元可求连续的偏导数,我们就想到,直接对方程两边求导:
∂ y ∂ x i F y ′ + F i ′ = 0 \frac{\partial y}{\partial x_i}F_y ^\prime+ F_{i}^\prime = 0 xiyFy+Fi=0只要 F y ′ ≠ 0 F_y^\prime\neq 0 Fy=0,就可以求出 ∂ y ∂ x i \frac{\partial y}{\partial x_i} xiy。隐函数存在定理将表明,只要 F y ′ ≠ 0 F_y^\prime\neq 0 Fy=0,在很小的一个局部,隐函数是存在的,并且确定的隐函数还是连续可微的。接下来我们用的范数是 ∣ ( x 1 , x 2 , ⋯   , x n ) ∣ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \displaystyle|(x_1,x_2,\cdots,x_n)|=\max_{1\le i\le n}|x_i| (x1,x2,,xn)=1inmaxxi,容易验证这是一个范数,这个范数的好处是,由其诱导的距离产生的邻域是一个方体,即对任意的 x 0 = ( x 1 ( 0 ) , ⋯   , x n ( 0 ) ) x_0=(x_1^{(0)},\cdots,x_n^{(0)}) x0=(x1(0),,xn(0)),则 B ( x 0 , δ ) = { ( x 1 , ⋯   , x n ) : ∣ x i − x i ( 0 ) ∣ < δ , i = 1 , ⋯   , n } B(x_0,\delta)=\{(x_1,\cdots,x_n):|x_i-x_i^{(0)}|<\delta,i=1,\cdots,n\} B(x0,δ)={(x1,,xn):xixi(0)<δ,i=1,,n}由此,如果我们将 x 0 = ( x 0 ′ , x 0 ′ ′ ) x_0=(x_0^\prime,x_0^{\prime\prime}) x0=(x0,x0),其中 x 0 ′ = ( x 1 ( 0 ) , ⋯   , x m ( 0 ) ) x_0^\prime=(x_1^{(0)},\cdots,x_m^{(0)}) x0=(x1(0),,xm(0))。则 B ( x 0 , δ ) = B ( x 0 ′ , δ ) × B ( x 0 ′ ′ , δ ) B(x_0,\delta)=B(x_0^\prime,\delta)\times B(x_0^{\prime\prime},\delta) B(x0,δ)=B(x0,δ)×B(x0,δ)这比较方便我们书写证明的过程

定理14.7(隐函数存在定理1) F ( x 1 , ⋯   , x n , y ) F(x_1,\cdots,x_n,y) F(x1,,xn,y)是某个开集 G G G上的连续可微函数,并且 ( x 1 0 , ⋯   , x n 0 , y 0 ) ∈ G (x_1^0,\cdots,x_n^0,y^0)\in G (x10,,xn0,y0)G,同时满足:
(1) F ( x 1 0 , ⋯   , x n 0 , y 0 ) = 0 F(x_1^0,\cdots,x_n^0,y_0)=0 F(x10,,xn0,y0)=0
(2) F y ( x 1 0 , ⋯   , x n 0 , y 0 ) ≠ 0 F_y(x_1^0,\cdots,x_n^0,y_0)\neq 0 Fy(x10,,xn0,y0)=0
则存在 ( x 1 0 , ⋯   , x n 0 ) (x_1^0,\cdots,x_n^0) (x10,,xn0)的邻域 B 1 B_1 B1 y 0 y_0 y0的邻域 B B B B 1 × B ⊂ G B_1\times B \subset G B1×BG,存在定义在 B 1 B_1 B1上的唯一的 n n n元连续可微函数 y = f ( x 1 , ⋯   , x n ) y=f(x_1,\cdots,x_n) y=f(x1,,xn),满足:
(1) f ( x 1 , ⋯   , x n ) ∈ B ∀ ( x 1 , ⋯   , x n ) ∈ B 1 f(x_1,\cdots,x_n)\in B \quad \forall (x_1,\cdots,x_n) \in B_1 f(x1,,xn)B(x1,,xn)B1
(2) y 0 = f ( x 1 0 , ⋯   , x n 0 ) y_0=f(x_1^0,\cdots,x_n^0) y0=f(x10,,xn0)
(3) F ( x 1 , ⋯   , x n , f ( x 1 , ⋯   , x n ) ) = 0 ∀ ( x 1 , ⋯   , x n ) ∈ B 1 F(x_1,\cdots,x_n,f(x_1,\cdots,x_n))=0\quad \forall (x_1,\cdots,x_n) \in B_1 F(x1,,xn,f(x1,,xn))=0(x1,,xn)B1
(4) y y y B 1 B_1 B1上连续可微,并且
∂ y ∂ x k = − F x k ′ F y ′ \frac{\partial y}{\partial x_k} = -\frac{F_{x_k}^\prime}{F_y^\prime} xky=FyFxk

证:
这里假设 F y ′ ( x 1 0 , ⋯   , x n 0 , y 0 ) > 0 F_y^\prime(x_1^0,\cdots,x_n^0,y_0)>0 Fy(x10,,xn0,y0)>0,而 F y ′ ( x 1 0 , ⋯   , x n 0 , y 0 ) < 0 F_y^\prime(x_1^0,\cdots,x_n^0,y_0)<0 Fy(x10,,xn0,y0)<0的证明是类似的。
第 一 步 ‾ \underline{第一步} :我们要证明隐函数的存在性:
由偏导的连续性,存在 δ > 0 \delta >0 δ>0,当 ( x , y ) ∈ B ( ( x 0 , y 0 ) , δ ) ⊂ G (x,y)\in B((x_0,y_0),\delta) \subset G (x,y)B((x0,y0),δ)G
F y ′ ( x 1 , ⋯   , x n , y ) > 0 F_y^\prime(x_1,\cdots,x_n,y)>0 Fy(x1,,xn,y)>0 ( x , y ) ∈ B ( ( x 0 , y 0 ) , δ ) (x,y) \in B((x_0,y_0),\delta) (x,y)B((x0,y0),δ)时, F ( x 1 , ⋯   , x n , y ) F(x_1,\cdots,x_n,y) F(x1,,xn,y)作为 y y y的一元函数在 ( y 0 − δ , y 0 + δ ) (y_0-\delta,y_0+\delta) (y0δ,y0+δ)上严格单调上升。
于是,有 { F ( x 1 0 , ⋯   , x n 0 , y 0 + δ 2 ) > 0 F ( x 1 0 , ⋯   , x n 0 , y 0 − δ 2 ) < 0 \begin{cases} F(x_1^0,\cdots,x_n^0,y_0+\frac{\delta}{2})>0\\ F(x_1^0,\cdots,x_n^0,y_0-\frac{\delta}{2})<0 \end{cases} {F(x10,,xn0,y0+2δ)>0F(x10,,xn0,y02δ)<0由函数的连续性,存在 0 < δ 2 < δ 2 0<\delta_2<\frac{\delta}{2} 0<δ2<2δ ( x , y ) ∈ B ( ( x 0 , y 0 + δ 2 ) , δ 2 ) (x,y)\in B((x_0,y_0+\frac{\delta}{2}),\delta_2) (x,y)B((x0,y0+2δ),δ2)时,就有
F ( x 1 , ⋯   , x n , y ) > 0 F(x_1,\cdots,x_n,y)>0 F(x1,,xn,y)>0并且对任意的 ( x , y ) ∈ B ( ( x 0 , y 0 + δ 2 ) , δ 2 ) (x,y)\in B((x_0,y_0+\frac{\delta}{2}),\delta_2) (x,y)B((x0,y0+2δ),δ2),就有 d ( ( x , y ) , ( x 0 , y 0 ) ) ≤ d ( ( x , y ) , ( x 0 , y 0 + δ 2 ) ) + d ( ( x 0 , y 0 + δ 2 ) , ( x 0 , y 0 ) ) < δ 2 + δ 2 < δ \begin{aligned} &d((x,y),(x_0,y_0))\\ \le& d((x,y),(x_0,y_0+\frac{\delta}{2}))+d((x_0,y_0+\frac{\delta}{2}),(x_0,y_0))<\delta_2+\frac{\delta}{2}<\delta \end{aligned} d((x,y),(x0,y0))d((x,y),(x0,y0+2δ))+d((x0,y0+2δ),(x0,y0))<δ2+2δ<δ B ( ( x 0 , y 0 + δ 2 ) , δ 2 ) ⊂ B ( ( x 0 , y 0 ) , δ ) B((x_0,y_0+\frac{\delta}{2}),\delta_2)\subset B((x_0,y_0),\delta) B((x0,y0+2δ),δ2)B((x0,y0),δ),只要 x ∈ B ( ( x 0 , y 0 − δ 2 ) , δ 2 ) x\in B((x_0,y_0-\frac{\delta}{2}),\delta_2) xB((x0,y02δ),δ2),就有 F ( x 1 , ⋯   , x n , y ) < 0 F(x_1,\cdots,x_n,y)<0 F(x1,,xn,y)<0同理, B ( ( x 0 , y 0 − δ 2 ) , δ 2 ) ⊂ B ( ( x 0 , y 0 ) , δ ) B((x_0,y_0-\frac{\delta}{2}),\delta_2)\subset B((x_0,y_0),\delta) B((x0,y02δ),δ2)B((x0,y0),δ)。只要 x ∈ B ( x 0 , δ 2 ) x\in B(x_0,\delta_2) xB(x0,δ2),就有 { F ( x 1 , ⋯   , x n , y 0 + δ 2 ) > 0 F ( x 1 , ⋯   , x n , y 0 − δ 2 ) < 0 \begin{cases} F(x_1,\cdots,x_n,y_0+\frac{\delta}{2})>0\\ F(x_1,\cdots,x_n,y_0-\frac{\delta}{2})<0 \end{cases} {F(x1,,xn,y0+2δ)>0F(x1,,xn,y02δ)<0并且,当 y 0 − δ 2 ≤ y ≤ y 0 + δ 2 y_0-\frac{\delta}{2}\le y \le y_0+\frac{\delta}{2} y02δyy0+2δ
d ( ( x , y ) , ( x 0 , y 0 ) ) < δ d((x,y),(x_0,y_0))<\delta d((x,y),(x0,y0))<δ F ( x 1 , ⋯   , x n , y ) F(x_1,\cdots,x_n,y) F(x1,,xn,y)作为 y y y的一元函数,在 [ y 0 − δ 2 , y 0 + δ 2 ] [y_0-\frac{\delta}{2},y_0+\frac{\delta}{2}] [y02δ,y0+2δ]上连续,由介值定理,存在 f ( x 1 , ⋯   , x n ) ∈ ( y 0 − δ 2 , y 0 + δ 2 ) f(x_1,\cdots,x_n)\in (y_0-\frac{\delta}{2},y_0+\frac{\delta}{2}) f(x1,,xn)(y02δ,y0+2δ)
F ( x 1 , ⋯   , x n , f ( x 1 , ⋯   , x n ) ) = 0 F(x_1,\cdots,x_n,f(x_1,\cdots,x_n))=0 F(x1,,xn,f(x1,,xn))=0并且 ( x 1 , x 2 , ⋯   , x n , f ( x 1 , ⋯   , x n ) ) ∈ B ( ( x 0 , y 0 ) , δ ) (x_1,x_2,\cdots,x_n,f(x_1,\cdots,x_n))\in B((x_0,y_0),\delta) (x1,x2,,xn,f(x1,,xn))B((x0,y0),δ),这就证得了隐函数的存在性,令 B = B ( y 0 , δ ) B=B(y_0,\delta) B=B(y0,δ), B 1 = B ( x 0 , δ 2 ) B_1=B(x_0,\delta_2) B1=B(x0,δ2),则 f f f满足:
(1) f ( x 0 ) = y 0 f(x_0)=y_0 f(x0)=y0
(2) F ( x , f ( x ) ) = 0 , f ( x ) ∈ B , ∀ x ∈ B 1 F(x,f(x))=0,f(x)\in B,\forall x \in B_1 F(x,f(x))=0,f(x)B,xB1
并且这个函数 f f f是唯一的,假设存在定义在 B 1 = B ( x 0 , δ 2 ) B_1=B(x_0,\delta_2) B1=B(x0,δ2)上的函数 g g g,也满足:
(1) g ( x 0 ) = y 0 g(x_0)=y_0 g(x0)=y0
(2) F ( x , g ( x ) ) = 0 , g ( x ) ∈ B , ∀ x ∈ B 1 F(x,g(x))=0,g(x)\in B,\forall x \in B_1 F(x,g(x))=0,g(x)B,xB1
则对任意的 x ∈ B 1 x\in B_1 xB1,那么由于 F ( x , y ) F(x,y) F(x,y)作为 y y y的一元函数在 ( y 0 − δ , y 0 + δ ) (y_0-\delta,y_0+\delta) (y0δ,y0+δ)上严格单调上升,如果 g ( x ) > f ( x ) g(x) > f(x) g(x)>f(x),那么, F ( x , f ( x ) ) = 0 < F ( x , g ( x ) ) F(x,f(x))=0<F(x,g(x)) F(x,f(x))=0<F(x,g(x)),矛盾,因此 g ( x ) ≤ f ( x ) g(x)\le f(x) g(x)f(x),同理可证 g ( x ) ≥ f ( x ) g(x) \ge f(x) g(x)f(x),因此 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),这证明了隐函数的唯一性,同时 B 1 × B ⊂ B ( ( x 0 , y 0 ) , δ ) ⊂ G B_1\times B \subset B((x_0,y_0),\delta)\subset G B1×BB((x0,y0),δ)G
第 二 步 ‾ \underline{第二步} :证明 f f f B 1 B_1 B1上是连续的。对任意的 x ∈ B 2 x\in B_2 xB2,令 ε 0 = δ − ∣ f ( x ) − y 0 ∣ \varepsilon_0=\delta-|f(x)-y_0| ε0=δf(x)y0,对任意的 ε > 0 \varepsilon>0 ε>0,不妨设 ε < ε 0 \varepsilon<\varepsilon_0 ε<ε0,此时, f ( x ) + ε < f ( x ) + δ − ∣ f ( x ) − y 0 ∣ ≤ y 0 + δ f(x)+\varepsilon<f(x)+\delta-|f(x)-y_0|\le y_0+\delta f(x)+ε<f(x)+δf(x)y0y0+δ f ( x ) − ε > f ( x ) − δ + ∣ f ( x ) − y 0 ∣ ≥ y 0 − δ f(x)-\varepsilon>f(x)-\delta+|f(x)-y_0|\ge y_0-\delta f(x)ε>f(x)δ+f(x)y0y0δ。由于 F ( x , y ) F(x,y) F(x,y)作为 y y y的一元函数在 ( f ( x ) − ε , f ( x ) + ε ) (f(x)-\varepsilon,f(x)+\varepsilon) (f(x)ε,f(x)+ε)上严格单调上升,从而 { F ( x , f ( x ) − ε ) < 0 F ( x , f ( x ) + ε ) > 0 \begin{cases} F(x,f(x)-\varepsilon)<0\\ F(x,f(x)+\varepsilon)>0 \end{cases} {F(x,f(x)ε)<0F(x,f(x)+ε)>0 F F F的连续性, 存在 δ 3 > 0 \delta_3>0 δ3>0 δ 3 < min ⁡ ( δ − d ( ( x 0 , y 0 ) , ( x , f ( x ) − ε ) ) , δ − d ( ( x 0 , y 0 ) , ( x , f ( x ) + ε ) ) , δ 2 − d ( x , x 0 ) ) \delta_3<\min(\delta-d((x_0,y_0),(x,f(x)-\varepsilon)),\delta-d((x_0,y_0),(x,f(x)+\varepsilon)),\delta_2-d(x,x_0)) δ3<min(δd((x0,y0),(x,f(x)ε)),δd((x0,y0),(x,f(x)+ε)),δ2d(x,x0)),当 ( x ′ , y ′ ) ∈ B ( ( x , f ( x ) − ε ) , δ 3 ) (x^\prime,y^\prime)\in B((x,f(x)-\varepsilon),\delta_3) (x,y)B((x,f(x)ε),δ3) d ( x ′ , x 0 ) ≤ d ( x ′ , x ) + d ( x , x 0 ) < δ 2 ∣ y ′ − y 0 ∣ ≤ ∣ y ′ − f ( x ) + ε ∣ + ∣ f ( x ) − ε − y 0 ∣ < δ d(x^\prime,x_0)\le d(x^\prime,x)+d(x,x_0)<\delta_2\\ |y^\prime-y_0|\le |y^\prime-f(x)+\varepsilon|+|f(x)-\varepsilon-y_0|<\delta d(x,x0)d(x,x)+d(x,x0)<δ2yy0yf(x)+ε+f(x)εy0<δ F ( x , y ) < 0 F(x,y)<0 F(x,y)<0 ( x ′ , y ′ ) ∈ B ( ( x , f ( x ) + ε ) , δ 3 ) (x^\prime,y^\prime)\in B((x,f(x)+\varepsilon),\delta_3) (x,y)B((x,f(x)+ε),δ3) d ( x ′ , x 0 ) ≤ d ( x ′ , x ) + d ( x , x 0 ) < δ 2 ∣ y ′ − y 0 ∣ ≤ ∣ y ′ − f ( x ) − ε ∣ + ∣ f ( x ) + ε − y 0 ∣ < δ d(x^\prime,x_0)\le d(x^\prime,x)+d(x,x_0)<\delta_2\\ |y^\prime-y_0|\le |y^\prime-f(x)-\varepsilon|+|f(x)+\varepsilon-y_0|<\delta d(x,x0)d(x,x)+d(x,x0)<δ2yy0yf(x)ε+f(x)+εy0<δ F ( x , y ) > 0 F(x,y)>0 F(x,y)>0则当 d ( x ′ , x ) < δ 3 d(x^\prime,x)<\delta_3 d(x,x)<δ3时,有 F ( x ′ , f ( x ) + ε ) > 0 F ( x ′ , f ( x ) − ε ) < 0 F(x^\prime,f(x)+\varepsilon)>0\\ F(x^\prime,f(x)-\varepsilon)<0 F(x,f(x)+ε)>0F(x,f(x)ε)<0从而由介值定理, 存在 y ′ ∈ ( f ( x ) − ε , f ( x ) + ε ) y^\prime\in (f(x)-\varepsilon,f(x)+\varepsilon) y(f(x)ε,f(x)+ε),满足 F ( x ′ , y ′ ) = 0 F(x^\prime,y^\prime)=0 F(x,y)=0再由隐函数的唯一性, y ′ = f ( x ′ ) y^\prime=f(x^\prime) y=f(x),从而 ∣ f ( x ′ ) − f ( x ) ∣ < ε |f(x^\prime)-f(x)|<\varepsilon f(x)f(x)<ε 第 三 步 ‾ : \underline{第三步}: 证明 y = f ( x ) y=f(x) y=f(x)是连续可微的。
对任意的 x ∈ B 1 x\in B_1 xB1,对 k = 1 , ⋯   , n k=1,\cdots,n k=1,,n,对任意的 0 < Δ x k < δ 2 − d ( x , x 0 ) 0<\Delta x_k<\delta_2-d(x,x_0) 0<Δxk<δ2d(x,x0),则令 x ′ = ( x 1 , ⋯   , x k − 1 , x k + Δ x k , x k + 1 , x n ) x^\prime = (x_1,\cdots,x_{k-1},x_k+\Delta x_k,x_{k+1},x_n) x=(x1,,xk1,xk+Δxk,xk+1,xn),则 d ( x ′ , x 0 ) ≤ d ( x ′ , x ) + d ( x , x 0 ) = Δ x k + d ( x , x 0 ) < δ 2 d(x^\prime,x_0)\le d(x^\prime,x)+d(x,x_0)=\Delta x_k + d(x,x_0)<\delta_2 d(x,x0)d(x,x)+d(x,x0)=Δxk+d(x,x0)<δ2则存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),令 x ′ ′ = ( x 1 , ⋯   , x k − 1 , x k + ξ Δ x k , x k + 1 , ⋯   , x n ) x^{\prime\prime}=(x_1,\cdots,x_{k-1},x_k+\xi\Delta x_k,x_{k+1},\cdots,x_n) x=(x1,,xk1,xk+ξΔxk,xk+1,,xn),使得 F ( x ′ , f ( x ′ ) ) − F ( x , f ( x ) ) = F x k ′ ( x ′ ′ ) Δ x k + F y ′ ( x ′ ′ ) [ f ( x ′ ) − f ( x ) ] = 0 F(x^\prime,f(x^\prime))-F(x,f(x))=F_{x_k}^\prime(x^{\prime\prime})\Delta x_k+F_y^\prime(x^{\prime\prime})[f(x^\prime)-f(x)]=0 F(x,f(x))F(x,f(x))=Fxk(x)Δxk+Fy(x)[f(x)f(x)]=0 f ( x ′ ) − f ( x ) Δ x k = − F x k ′ ( x ′ ′ ) F y ′ ( x ′ ′ ) \frac{f(x^\prime)-f(x)}{\Delta x_k}=-\frac{F_{x_k}^\prime(x^{\prime\prime})}{F_{y}^\prime(x^{\prime\prime})} Δxkf(x)f(x)=Fy(x)Fxk(x) Δ x k → 0 \Delta x_k \to 0 Δxk0时, x ′ ′ → x x^{\prime\prime} \to x xx,从而有 lim ⁡ Δ x k → 0 f ( x ′ ) − f ( x ) Δ x k = − lim ⁡ Δ x k → 0 F x k ′ ( x ′ ′ ) F y ′ ( x ′ ′ ) = − F x k ′ ( x ) F y ′ ( x ) \lim_{\Delta x_k\to 0}\frac{f(x^\prime)-f(x)}{\Delta x_k}=-\lim_{\Delta x_k\to 0}\frac{F_{x_k}^\prime(x^{\prime\prime})}{F_{y}^\prime(x^{\prime\prime})}=-\frac{F_{x_k}^\prime(x)}{F_y^\prime(x)} Δxk0limΔxkf(x)f(x)=Δxk0limFy(x)Fxk(x)=Fy(x)Fxk(x)因此 f x k ′ ( x ) = − F x k ′ ( x ) F y ′ ( x ) f_{x_k}^\prime(x)=-\frac{F_{x_k}^\prime(x)}{F_y^\prime(x)} fxk(x)=Fy(x)Fxk(x)由于 F x k ′ , F y ′ F_{x_k}^\prime,F_y^\prime Fxk,Fy都是连续的,因此 f x k ′ ( x ) f_{x_k}^\prime(x) fxk(x)是连续的,从而 f ( x ) f(x) f(x)是连续可微。

也就是说,只要对 y y y的偏导数不为0,那么,就算我们从代数上无法反解出隐函数,也可以确认隐函数一定是存在的,并且还是连续可微的,那么我们上面求隐函数偏导的做法是合理的。

方程组情形

很多情况下,我们面对的是一个隐函数组: { F 1 ( x 1 , ⋯   , x n , y 1 , ⋯   , y m ) = 0 F 2 ( x 1 , ⋯   , x n , y 1 , ⋯   , y m ) = 0 ⋯ F m ( x 1 , ⋯   , x n , y 1 , ⋯   , y m ) = 0 (5) \tag{5} \begin{cases} F_1(x_1,\cdots,x_n,y_1,\cdots,y_m)=0\\ F_2(x_1,\cdots,x_n,y_1,\cdots,y_m)=0\\ \cdots\\ F_m(x_1,\cdots,x_n,y_1,\cdots,y_m)=0 \end{cases} F1(x1,,xn,y1,,ym)=0F2(x1,,xn,y1,,ym)=0Fm(x1,,xn,y1,,ym)=0(5)我们要求以上隐函数组能够确认一个隐向量函数 { y 1 = f 1 ( x 1 , ⋯   , x n ) y 2 = f 2 ( x 1 , ⋯   , x n ) ⋯ y m = f m ( x 1 , ⋯   , x n ) (6) \tag{6} \begin{cases} y_1 = f_1(x_1,\cdots,x_n)\\ y_2 = f_2(x_1,\cdots,x_n)\\ \cdots\\ y_m = f_m(x_1,\cdots,x_n) \end{cases} y1=f1(x1,,xn)y2=f2(x1,,xn)ym=fm(x1,,xn)(6)满足什么条件的情况下,可以做到这一点呢?不妨假设 F 1 , ⋯   , F m F_1,\cdots,F_m F1,,Fm在某个邻域上是连续可微的,可以确认一个隐函数组,并且每个分量函数都是连续可微的。那么求解隐函数组对各个分量的偏导数呢?以求解对 x 1 x_1 x1的偏导数为例:
将(6)代入(5),(5)的每个方程都对 x 1 x_1 x1求偏导,就有 { ∂ F 1 ∂ y 1 ∂ y 1 ∂ x 1 + ∂ F 1 ∂ y 2 ∂ y 2 ∂ x 1 + ⋯ + ∂ F 1 ∂ y m ∂ y m ∂ x 1 = − ∂ F 1 ∂ x 1 ∂ F 2 ∂ y 1 ∂ y 1 ∂ x 1 + ∂ F 2 ∂ y 2 ∂ y 2 ∂ x 1 + ⋯ + ∂ F 2 ∂ y m ∂ y m ∂ x 1 = − ∂ F 2 ∂ x 1 ⋯ ∂ F m ∂ y 1 ∂ y 1 ∂ x 1 + ∂ F m ∂ y 2 ∂ y 2 ∂ x 1 + ⋯ + ∂ F m ∂ y m ∂ y m ∂ x 1 = − ∂ F m ∂ x 1 (7) \tag{7} \begin{cases} \frac{\partial F_1}{\partial y_1}\frac{\partial y_1}{\partial x_1} + \frac{\partial F_1}{\partial y_2}\frac{\partial y_2}{\partial x_1} + \cdots + \frac{\partial F_1}{\partial y_m}\frac{\partial y_m}{\partial x_1} =-\frac{\partial F_1}{\partial x_1}\\ \frac{\partial F_2}{\partial y_1}\frac{\partial y_1}{\partial x_1} + \frac{\partial F_2}{\partial y_2}\frac{\partial y_2}{\partial x_1} + \cdots + \frac{\partial F_2}{\partial y_m}\frac{\partial y_m}{\partial x_1} =-\frac{\partial F_2}{\partial x_1}\\ \cdots\\ \frac{\partial F_m}{\partial y_1}\frac{\partial y_1}{\partial x_1} + \frac{\partial F_m}{\partial y_2}\frac{\partial y_2}{\partial x_1} + \cdots + \frac{\partial F_m}{\partial y_m}\frac{\partial y_m}{\partial x_1} =-\frac{\partial F_m}{\partial x_1}\\ \end{cases} y1F1x1y1+y2F1x1y2++ymF1x1ym=x1F1y1F2x1y1+y2F2x1y2++ymF2x1ym=x1F2y1Fmx1y1+y2Fmx1y2++ymFmx1ym=x1Fm(7)不难看出,(7)是关于 ( ∂ y 1 ∂ x 1 , ⋯   , ∂ y m ∂ x 1 ) (\frac{\partial y_1}{\partial x_1},\cdots,\frac{\partial y_m}{\partial x_1}) (x1y1,,x1ym)的齐次线性方程组,只要矩阵
J = [ ∂ F 1 ∂ y 1 ∂ F 1 ∂ y 2 ⋯ ∂ F 1 ∂ y m ∂ F 2 ∂ y 1 ∂ F 2 ∂ y 2 ⋯ ∂ F 2 ∂ y m ⋯ ⋯ ⋯ ⋯ ∂ F m ∂ y 1 ∂ F m ∂ y 2 ⋯ ∂ F m ∂ y m ] J= \left[ \begin{matrix} \frac{\partial F_1}{\partial y_1}&\frac{\partial F_1}{\partial y_2}&\cdots&\frac{\partial F_1}{\partial y_m}\\ \frac{\partial F_2}{\partial y_1}&\frac{\partial F_2}{\partial y_2}&\cdots&\frac{\partial F_2}{\partial y_m}\\ \cdots&\cdots&\cdots&\cdots\\ \frac{\partial F_m}{\partial y_1}&\frac{\partial F_m}{\partial y_2}&\cdots&\frac{\partial F_m}{\partial y_m} \end{matrix} \right] J=y1F1y1F2y1Fmy2F1y2F2y2FmymF1ymF2ymFm可逆,就可以反解出偏导数,可逆的充要条件是其行列式不为0,记
∂ ( F 1 , ⋯   , F m ) ∂ ( y 1 , ⋯   , y m ) = det ⁡ [ ∂ F 1 ∂ y 1 ∂ F 1 ∂ y 2 ⋯ ∂ F 1 ∂ y m ∂ F 2 ∂ y 1 ∂ F 2 ∂ y 2 ⋯ ∂ F 2 ∂ y m ⋯ ⋯ ⋯ ⋯ ∂ F m ∂ y 1 ∂ F m ∂ y 2 ⋯ ∂ F m ∂ y m ] \frac{\partial(F_1,\cdots,F_m)}{\partial(y_1,\cdots,y_m)} =\det\left[ \begin{matrix} \frac{\partial F_1}{\partial y_1}&\frac{\partial F_1}{\partial y_2}&\cdots&\frac{\partial F_1}{\partial y_m}\\ \frac{\partial F_2}{\partial y_1}&\frac{\partial F_2}{\partial y_2}&\cdots&\frac{\partial F_2}{\partial y_m}\\ \cdots&\cdots&\cdots&\cdots\\ \frac{\partial F_m}{\partial y_1}&\frac{\partial F_m}{\partial y_2}&\cdots&\frac{\partial F_m}{\partial y_m} \end{matrix} \right] (y1,,ym)(F1,,Fm)=dety1F1y1F2y1Fmy2F1y2F2y2FmymF1ymF2ymFm

定理14.8(隐函数存在定理2) F ( x , y ) = ( F 1 ( x , y ) , ⋯   , F m ( x , y ) ) F(x,y)=(F_1(x,y),\cdots,F_m(x,y)) F(x,y)=(F1(x,y),,Fm(x,y)) R n + m R^{n+m} Rn+m上的开集 G G G上的连续可微向量函数,其中 x ∈ R n , y ∈ R m x\in R^n,y\in R^m xRn,yRm ( x 0 , y 0 ) ∈ G (x_0,y_0)\in G (x0,y0)G x 0 = ( x 1 0 , ⋯   , x n 0 ) , y 0 = ( y 1 0 , ⋯   , y m 0 ) x_0=(x_1^0,\cdots,x_n^0),y_0=(y_1^0,\cdots,y_m^0) x0=(x10,,xn0),y0=(y10,,ym0),满足:
(1) F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0
(2) ∂ ( F 1 , ⋯   , F m ) ∂ ( y 1 , ⋯   , y m ) ( x 0 , y 0 ) ≠ 0 \frac{\partial(F_1,\cdots,F_m)}{\partial(y_1,\cdots,y_m)}(x_0,y_0)\neq 0 (y1,,ym)(F1,,Fm)(x0,y0)=0
则存在 x 0 x_0 x0的邻域 B 1 B_1 B1 y 0 y_0 y0的邻域 B 2 B_2 B2 B 1 × B 2 ⊂ G B_1\times B_2\subset G B1×B2G,存在惟一的 B 1 B_1 B1上的连续可微的 n n n m m m维向量函数 f = ( f 1 , ⋯   , f m ) f=(f_1,\cdots,f_m) f=(f1,,fm),满足:
(1) ∀ x ∈ B 1 \forall x\in B_1 xB1 ( x , f ( x ) ) ∈ B 2 (x,f(x))\in B_2 (x,f(x))B2 F ( x , f ( x ) ) = 0 F(x,f(x))=0 F(x,f(x))=0
(2) f ( x 0 ) = y 0 f(x_0)=y_0 f(x0)=y0
(3) ∀ x ∈ B 1 , ∂ ( F 1 , ⋯   , F m ) ∂ ( y 1 , ⋯   , y m ) ( x , f ( x ) ) ≠ 0 \forall x\in B_1,\frac{\partial(F_1,\cdots,F_m)}{\partial(y_1,\cdots,y_m)}(x,f(x))\neq 0 xB1,(y1,,ym)(F1,,Fm)(x,f(x))=0,同时,令 D ( x , y ) = [ ∂ F 1 ∂ y 1 ( x , y ) ∂ F 1 ∂ y 2 ( x , y ) ⋯ ∂ F 1 ∂ y m ( x , y ) ∂ F 2 ∂ y 1 ( x , y ) ∂ F 2 ∂ y 2 ( x , y ) ⋯ ∂ F 2 ∂ y m ( x , y ) ⋯ ⋯ ⋯ ∂ F m ∂ y 1 ( x , y ) ∂ F m ∂ y 2 ( x , y ) ⋯ ∂ F m ∂ y m ( x , y ) ] D(x,y)=\left[\begin{matrix} \frac{\partial F_1}{\partial y_1}(x,y)&\frac{\partial F_1}{\partial y_2}(x,y)&\cdots&\frac{\partial F_1}{\partial y_m}(x,y)\\ \frac{\partial F_2}{\partial y_1}(x,y)&\frac{\partial F_2}{\partial y_2}(x,y)&\cdots&\frac{\partial F_2}{\partial y_m}(x,y)\\ \cdots&\cdots&&\cdots\\ \frac{\partial F_m}{\partial y_1}(x,y)&\frac{\partial F_m}{\partial y_2}(x,y)&\cdots&\frac{\partial F_m}{\partial y_m}(x,y) \end{matrix}\right] D(x,y)=y1F1(x,y)y1F2(x,y)y1Fm(x,y)y2F1(x,y)y2F2(x,y)y2Fm(x,y)ymF1(x,y)ymF2(x,y)ymFm(x,y) A ( x , y ) = [ ∂ F 1 ∂ x 1 ( x , y ) ∂ F 1 ∂ x 2 ( x , y ) ⋯ ∂ F 1 ∂ x n ( x , y ) ∂ F 2 ∂ x 1 ( x , y ) ∂ F 2 ∂ x 2 ( x , y ) ⋯ ∂ F 2 ∂ x n ( x , y ) ⋯ ⋯ ⋯ ∂ F m ∂ x 1 ( x , y ) ∂ F m ∂ x 2 ( x , y ) ⋯ ∂ F m ∂ x n ( x , y ) ] A(x,y)=\left[\begin{matrix} \frac{\partial F_1}{\partial x_1}(x,y)&\frac{\partial F_1}{\partial x_2}(x,y)&\cdots&\frac{\partial F_1}{\partial x_n}(x,y)\\ \frac{\partial F_2}{\partial x_1}(x,y)&\frac{\partial F_2}{\partial x_2}(x,y)&\cdots&\frac{\partial F_2}{\partial x_n}(x,y)\\ \cdots&\cdots&&\cdots\\ \frac{\partial F_m}{\partial x_1}(x,y)&\frac{\partial F_m}{\partial x_2}(x,y)&\cdots&\frac{\partial F_m}{\partial x_n}(x,y) \end{matrix}\right] A(x,y)=x1F1(x,y)x1F2(x,y)x1Fm(x,y)x2F1(x,y)x2F2(x,y)x2Fm(x,y)xnF1(x,y)xnF2(x,y)xnFm(x,y) f ′ ( x ) = − D − 1 ( x , f ( x ) ) A ( x , f ( x ) ) f^\prime(x)=-D^{-1}(x,f(x))A(x,f(x)) f(x)=D1(x,f(x))A(x,f(x))

证:对隐函数组方程的个数进行归纳。在 m = 1 m=1 m=1时结论是成立的,假设对 k k k个方程确定的隐函数组,隐函数存在定理2也成立。
①对 k + 1 k+1 k+1个方程确定的隐函数组 F ( x , y ) = ( F 1 ( x , y ) , ⋯   , F k + 1 ( x , y ) ) = 0 F(x,y)=(F_1(x,y),\cdots,F_{k+1}(x,y))=0 F(x,y)=(F1(x,y),,Fk+1(x,y))=0其中 x = ( x 1 , ⋯   , x n ) , y = ( y 1 , ⋯   , y k , y k + 1 ) x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_k,y_{k+1}) x=(x1,,xn),y=(y1,,yk,yk+1) F ( x , y ) F(x,y) F(x,y) R n + k + 1 R^{n+k+1} Rn+k+1的开集 G G G上的连续可微映射,对 x 0 = ( x 1 0 , ⋯   , x n 0 ) , y 0 = ( y 1 0 , y 2 0 , ⋯   , y k + 1 0 ) x_0=(x_1^0,\cdots,x_n^0),y_0=(y_1^0,y_2^0,\cdots,y_{k+1}^0) x0=(x10,,xn0),y0=(y10,y20,,yk+10) ( x 0 , y 0 ) ∈ G (x_0,y_0)\in G (x0,y0)G,有
(1) F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0
(2) ∂ ( F 1 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ≠ 0 \frac{\partial(F_1,\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{k+1})}(x_0,y_0)\neq0 (y1,,yk+1)(F1,,Fk+1)(x0,y0)=0
存在 δ 1 > 0 \delta_1>0 δ1>0,当 ( x , y ) ∈ B ( ( x 0 , y 0 ) , δ 1 ) ⊂ G (x,y)\in B((x_0,y_0),\delta_1)\subset G (x,y)B((x0,y0),δ1)G时,有 ∂ ( F 1 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y k + 1 ) ( x , y ) ≠ 0 \frac{\partial(F_1,\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{k+1})}(x,y)\neq0 (y1,,yk+1)(F1,,Fk+1)(x,y)=0,对行列式 det ⁡ D ( x 0 , y 0 ) = ∂ ( F 1 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y k + 1 ) ( x 0 , y 0 ) \det D(x_0,y_0)=\frac{\partial(F_1,\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{k+1})}(x_0,y_0) detD(x0,y0)=(y1,,yk+1)(F1,,Fk+1)(x0,y0)按第一行展开,就有 det ⁡ D ( x 0 , y 0 ) = ∑ i = 1 k + 1 ( − 1 ) i + 1 ∂ F 1 ∂ x i ( x 0 , y 0 ) ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y i − 1 , y i + 1 , ⋯   , y k + 1 ) ( x 0 , y 0 ) \begin{aligned} &\det D(x_0,y_0)\\=&\sum_{i=1}^{k+1}(-1)^{i+1}\frac{\partial F_1}{\partial x_i}(x_0,y_0)\frac{\partial(F_{2},\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{i-1},y_{i+1},\cdots,y_{k+1})}(x_0,y_0) \end{aligned} =detD(x0,y0)i=1k+1(1)i+1xiF1(x0,y0)(y1,,yi1,yi+1,,yk+1)(F2,,Fk+1)(x0,y0)则以上和式至少有一项非零,不失一般性,设 ∂ F 1 ∂ x 1 ( x 0 , y 0 ) ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 2 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ≠ 0 \frac{\partial F_1}{\partial x_1}(x_0,y_0)\frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_2,\cdots,y_{k+1})}(x_0,y_0)\neq 0 x1F1(x0,y0)(y2,,yk+1)(F2,,Fk+1)(x0,y0)=0(否则调整 y 1 , ⋯   , y m y_1,\cdots,y_m y1,,ym的顺序即可),则 ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 2 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ≠ 0 \frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_2,\cdots,y_{k+1})}(x_0,y_0)\neq 0 (y2,,yk+1)(F2,,Fk+1)(x0,y0)=0,同时, F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0,由归纳假设:
y 0 ′ = ( y 2 0 , ⋯   , y k + 1 0 ) y_0^\prime=(y_2^0,\cdots,y_{k+1}^0) y0=(y20,,yk+10) x 0 ′ = ( x 1 0 , ⋯   , x n 0 , y 1 0 ) x_0^\prime=(x_1^0,\cdots,x_n^0,y_1^0) x0=(x10,,xn0,y10),存在 x 0 ′ x_0^\prime x0的某个邻域 B 1 = B ( x 0 ′ , δ 2 ) B_1=B(x_0^\prime,\delta_2) B1=B(x0,δ2)以及 y 0 ′ y_0^\prime y0的某个邻域 B 2 = B ( y 0 ′ , δ 3 ) B_2=B(y_0^\prime,\delta_3) B2=B(y0,δ3) B 1 × B 2 ⊂ G B_1\times B_2\subset G B1×B2G,存在惟一的 B 1 B_1 B1上连续可微的 n + 1 n+1 n+1 k k k维向量函数 φ ( x , y 1 ) = ( φ 2 ( x , y 1 ) , ⋯   , φ k + 1 ( x , y 1 ) ) \varphi(x,y_1)=(\varphi_2(x,y_1),\cdots,\varphi_{k+1}(x,y_1)) φ(x,y1)=(φ2(x,y1),,φk+1(x,y1))
(1) ∀ ( x , y 1 ) ∈ B 1 , F i ( x , y 1 , φ ( x , y 1 ) ) = 0 , i = 2. ⋯   , k + 1 , φ ( x , y 1 ) ∈ B 2 \forall (x,y_1)\in B_1,F_i(x,y_1,\varphi(x,y_1))=0,i=2.\cdots,k+1,\varphi(x,y_1)\in B_2 (x,y1)B1,Fi(x,y1,φ(x,y1))=0,i=2.,k+1,φ(x,y1)B2
(2) φ ( x 0 ′ ) = y 0 ′ \varphi(x_0^\prime)=y_0^\prime φ(x0)=y0
(3) ∀ ( x , y 1 ) ∈ B 1 \forall (x,y_1)\in B_1 (x,y1)B1 ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 2 , ⋯   , y k + 1 ) ( x , y 1 , ϕ ( x , y 1 ) ) ≠ 0 \frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_2,\cdots,y_{k+1})}(x,y_1,\phi(x,y_1))\neq0 (y2,,yk+1)(F2,,Fk+1)(x,y1,ϕ(x,y1))=0,同时,令 D ′ ( x , y ) = [ ∂ F 2 ∂ y 2 ( x , y ) ⋯ ∂ F 2 ∂ y k + 1 ( x , y ) ⋯ ⋯ ∂ F k + 1 ∂ y 2 ( x , y ) ⋯ ∂ F k + 1 ∂ y k + 1 ( x , y ) ] D^\prime(x,y)=\left[\begin{matrix} \frac{\partial F_2}{\partial y_2}(x,y)&\cdots&\frac{\partial F_2}{\partial y_{k+1}}(x,y)\\ \cdots&&\cdots\\ \frac{\partial F_{k+1}}{\partial y_2}(x,y)&\cdots&\frac{\partial F_{k+1}}{\partial y_{k+1}}(x,y) \end{matrix}\right] D(x,y)=y2F2(x,y)y2Fk+1(x,y)yk+1F2(x,y)yk+1Fk+1(x,y) A ′ ( x , y ) = [ ∂ F 2 ∂ x 1 ( x , y ) ∂ F 2 ∂ x 2 ( x , y ) ⋯ ∂ F 2 ∂ x n ( x , y ) ∂ F 2 ∂ y 1 ( x , y ) ∂ F 3 ∂ x 1 ( x , y ) ∂ F 3 ∂ x 2 ( x , y ) ⋯ ∂ F 3 ∂ x n ( x , y ) ∂ F 3 ∂ y 1 ( x , y ) ⋯ ⋯ ⋯ ⋯ ∂ F k + 1 ∂ x 1 ( x , y ) ∂ F k + 1 ∂ x 2 ( x , y ) ⋯ ∂ F k + 1 ∂ x n ( x , y ) ∂ F k + 1 ∂ y 1 ( x , y ) ] A^\prime(x,y)=\left[\begin{matrix} \frac{\partial F_2}{\partial x_1}(x,y)&\frac{\partial F_2}{\partial x_2}(x,y)&\cdots&\frac{\partial F_2}{\partial x_n}(x,y)&\frac{\partial F_2}{\partial y_1}(x,y)\\ \frac{\partial F_3}{\partial x_1}(x,y)&\frac{\partial F_3}{\partial x_2}(x,y)&\cdots&\frac{\partial F_3}{\partial x_n}(x,y)&\frac{\partial F_3}{\partial y_1}(x,y)\\ \cdots&\cdots&&\cdots&\cdots\\ \frac{\partial F_{k+1}}{\partial x_1}(x,y)&\frac{\partial F_{k+1}}{\partial x_2}(x,y)&\cdots&\frac{\partial F_{k+1}}{\partial x_n}(x,y)&\frac{\partial F_{k+1}}{\partial y_1}(x,y) \end{matrix}\right] A(x,y)=x1F2(x,y)x1F3(x,y)x1Fk+1(x,y)x2F2(x,y)x2F3(x,y)x2Fk+1(x,y)xnF2(x,y)xnF3(x,y)xnFk+1(x,y)y1F2(x,y)y1F3(x,y)y1Fk+1(x,y)就有 φ ′ = − D ′ ( x , y 1 , φ ( x , y 1 ) ) A ′ ( x , y 1 , φ ( x , y 1 ) ) \varphi^\prime=-D^\prime(x,y_1,\varphi(x,y_1))A^\prime(x,y_1,\varphi(x,y_1)) φ=D(x,y1,φ(x,y1))A(x,y1,φ(x,y1))这里规定 δ 2 < δ 1 , δ 3 < δ 1 \delta_2<\delta_1,\delta_3<\delta_1 δ2<δ1,δ3<δ1,这由连续性是可以取到的。
②我们要指出在 B 1 × B 2 B_1\times B_2 B1×B2上,方程 F ( x , y ) = 0 (I) \tag{I} F(x,y)=0 F(x,y)=0(I)和方程 { F 1 ( x , y ) = 0 y 2 = φ 2 ( x , y 1 ) ⋯ y k + 1 = φ k + 1 ( x , y 1 ) (II) \tag{II} \begin{cases} F_1(x,y)=0\\ y_2=\varphi_2(x,y_1)\\ \cdots\\ y_{k+1}=\varphi_{k+1}(x,y_1) \end{cases} F1(x,y)=0y2=φ2(x,y1)yk+1=φk+1(x,y1)(II)是等价的。这是因为首先满足方程 ( I I ) (II) (II)自然就满足方程 ( I ) (I) (I),其次,如果满足 ( x , y ) (x,y) (x,y)方程 ( I ) (I) (I),并且 ( x , y 1 ) ∈ B 1 , ( y 2 , ⋯   , y k + 1 ) ∈ B 2 (x,y_1)\in B_1,(y_2,\cdots,y_{k+1})\in B_2 (x,y1)B1,(y2,,yk+1)B2,则一定满足 F 1 ( x , y ) = 0 F_1(x,y)=0 F1(x,y)=0,其次还满足方程组 F i ( x , y ) = 0 , i = 2 , ⋯   , k + 1 F_i(x,y)=0,i=2,\cdots,k+1 Fi(x,y)=0,i=2,,k+1。由于 ( x , y 1 ) ∈ B 1 , ( y 2 , ⋯   , y k + 1 ) ∈ B 2 (x,y_1)\in B_1,(y_2,\cdots,y_{k+1})\in B_2 (x,y1)B1,(y2,,yk+1)B2,再由 φ \varphi φ的唯一性,就一定有 y i = φ i ( x , y 1 ) , i = 2 , ⋯   , k + 1 y_i=\varphi_i(x,y_1),i=2,\cdots,k+1 yi=φi(x,y1),i=2,,k+1这就说明了 ( I ) (I) (I) ( I I ) (II) (II)是等价的。
③当 ( x , y 1 ) ∈ B 1 (x,y_1)\in B_1 (x,y1)B1时,令 G ( x , y 1 ) = F 1 ( x , y 1 , φ ( x , y 1 ) ) G(x,y_1)=F_1(x,y_1,\varphi(x,y_1)) G(x,y1)=F1(x,y1,φ(x,y1)),此时,由归纳假设, ( x , y 1 , φ ( x , y 1 ) ) ∈ B ( ( x 0 , y 0 ) , δ 1 ) (x,y_1,\varphi(x,y_1))\in B((x_0,y_0),\delta_1) (x,y1,φ(x,y1))B((x0,y0),δ1),则 ∂ g ∂ y 1 ( x 0 ′ ) = ∂ F 1 ∂ y 1 ( x 0 , y 0 ) + ∑ i = 2 k + 1 ∂ φ i ∂ y 1 ( x 0 ′ ) ∂ F 1 ∂ y i ( x 0 , y 0 ) \frac{\partial g}{\partial y_1}(x_0^\prime)=\frac{\partial F_1}{\partial y_1}(x_0,y_0)+\sum_{i=2}^{k+1}\frac{\partial \varphi_i}{\partial y_1}(x_0^\prime)\frac{\partial F_1}{\partial y_i}(x_0,y_0) y1g(x0)=y1F1(x0,y0)+i=2k+1y1φi(x0)yiF1(x0,y0)同时 g ( x 0 ′ , φ ( x 0 ′ ) ) = F 1 ( x 0 , y 0 ) = 0 g(x_0^\prime,\varphi(x_0^\prime))=F_1(x_0,y_0)=0 g(x0,φ(x0))=F1(x0,y0)=0,现在我们来计算 ∂ g ∂ y 1 ( x 0 ′ ) \frac{\partial g}{\partial y_1}(x_0^\prime) y1g(x0)。由归纳假设, b = ( ∂ φ 2 ∂ y 1 ( x 0 ′ ) , ⋯   , ∂ φ k + 1 ∂ y 1 ( x 0 ′ ) ) T , a = ( ∂ F 2 ∂ y 1 ( x 0 , y 0 ) , ⋯   , ∂ F k + 1 ∂ y 1 ( x 0 , y 0 ) ) T b=(\frac{\partial \varphi_2}{\partial y_1}(x_0^\prime),\cdots,\frac{\partial \varphi_{k+1}}{\partial y_1}(x_0^\prime))^T,a=(\frac{\partial F_2}{\partial y_1}(x_0,y_0),\cdots,\frac{\partial F_{k+1}}{\partial y_1}(x_0,y_0))^T b=(y1φ2(x0),,y1φk+1(x0))T,a=(y1F2(x0,y0),,y1Fk+1(x0,y0))T,则有以下方程组成立 D ′ ( x 0 , y 0 ) b = − a D^\prime(x_0,y_0)b=-a D(x0,y0)b=a由克拉默法则,对 i = 2 , ⋯   , k + 1 i=2,\cdots,k+1 i=2,,k+1,有 ∂ φ i ∂ y 1 ( x 0 ′ ) = ( − 1 ) i + 1 ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y i − 1 , y i + 1 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 2 , ⋯   , y k + 1 ) ( x 0 , y 0 ) \frac{\partial \varphi_i}{\partial y_1}(x_0^\prime)= \frac{ (-1)^{i+1}\frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{i-1},y_{i+1},\cdots,y_{k+1})}(x_0,y_0) }{ \frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_2,\cdots,y_{k+1})}(x_0,y_0) } y1φi(x0)=(y2,,yk+1)(F2,,Fk+1)(x0,y0)(1)i+1(y1,,yi1,yi+1,,yk+1)(F2,,Fk+1)(x0,y0) ∂ g ∂ y 1 ( x 0 ′ ) = ∑ i = 1 k + 1 ( − 1 ) i + 1 ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y i − 1 , y i + 1 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 2 , ⋯   , y k + 1 ) ( x 0 , y 0 ) = ∂ ( F 1 , ⋯   , F k + 1 ) ∂ ( y 1 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ∂ ( F 2 , ⋯   , F k + 1 ) ∂ ( y 2 , ⋯   , y k + 1 ) ( x 0 , y 0 ) ≠ 0 \begin{aligned} &\frac{\partial g}{\partial y_1}(x_0^\prime)=\frac{ \sum_{i=1}^{k+1}(-1)^{i+1}\frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{i-1},y_{i+1},\cdots,y_{k+1})}(x_0,y_0) } { \frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_2,\cdots,y_{k+1})}(x_0,y_0) }\\=&\frac{\frac{\partial(F_1,\cdots,F_{k+1})}{\partial(y_1,\cdots,y_{k+1})}(x_0,y_0)} {\frac{\partial(F_2,\cdots,F_{k+1})}{\partial(y_2,\cdots,y_{k+1})}(x_0,y_0)}\neq 0 \end{aligned} =y1g(x0)=(y2,,yk+1)(F2,,Fk+1)(x0,y0)i=1k+1(1)i+1(y1,,yi1,yi+1,,yk+1)(F2,,Fk+1)(x0,y0)(y2,,yk+1)(F2,,Fk+1)(x0,y0)(y1,,yk+1)(F1,,Fk+1)(x0,y0)=0④由隐函数存在定理1,存在 x 0 x_0 x0的邻域 B 3 = B ( x 0 , δ 4 ) B_3=B(x_0,\delta_4) B3=B(x0,δ4) y 0 y_0 y0的邻域 B 4 = B ( y 0 , δ 5 ) B_4=B(y_0,\delta_5) B4=B(y0,δ5),存在唯一的定义在 B 3 B_3 B3上的 n n n元连续可微函数 y 1 = φ 1 ( x 1 , ⋯   , x n ) y_1=\varphi_1(x_1,\cdots,x_n) y1=φ1(x1,,xn),满足:
(1) ∀ x ∈ B 3 , g ( x , φ 1 ( x ) ) = F 1 ( x , φ 1 ( x ) , φ ( x , φ 1 ( x ) ) ) = 0 , φ 1 ( x ) ∈ B 4 \forall x\in B_3,g(x,\varphi_1(x))=F_1(x,\varphi_1(x),\varphi(x,\varphi_1(x)))=0,\varphi_1(x)\in B_4 xB3,g(x,φ1(x))=F1(x,φ1(x),φ(x,φ1(x)))=0,φ1(x)B4
(2) φ 1 ( x 0 ) = y 1 0 \varphi_1(x_0)=y_1^0 φ1(x0)=y10
(3) ∂ φ 1 ∂ x i ( x ) = − ∂ g ∂ x i ( x , φ 1 ( x ) ) ∂ g ∂ y 1 ( x , φ 1 ( x ) ) \frac{\partial\varphi_1}{\partial x_i}(x)=-\frac{\frac{\partial g}{\partial x_i}(x,\varphi_1(x))}{\frac{\partial g}{\partial y_1}(x,\varphi_1(x))} xiφ1(x)=y1g(x,φ1(x))xig(x,φ1(x)), i = 1 , ⋯   , n , ∀ x ∈ B 3 i=1,\cdots,n,\forall x\in B_3 i=1,,n,xB3
这里不妨设 δ 4 < δ 2 , δ 5 < min ⁡ ( δ 2 , δ 3 ) \delta_4<\delta_2,\delta_5<\min(\delta_2,\delta_3) δ4<δ2,δ5<min(δ2,δ3)(由连续性是可以取到的)
⑤这里要指出的是,在 B 3 × B 4 ⊂ B 1 × B 2 B_3\times B_4 \subset B_1\times B_2 B3×B4B1×B2上,方程组 ( I I ) (II) (II)和方程组 { y 1 = φ 1 ( x ) y 2 = φ 2 ( x , y 1 ) ⋯ y k + 1 = φ k + 1 ( x , y 1 ) (III) \tag{III} \begin{cases} y_1=\varphi_1(x)\\ y_2=\varphi_2(x,y_1)\\ \cdots\\ y_{k+1}=\varphi_{k+1}(x,y_1) \end{cases} y1=φ1(x)y2=φ2(x,y1)yk+1=φk+1(x,y1)(III)是等价的,这说明在 B 3 × B 4 B_3\times B_4 B3×B4上, ( I I I ) (III) (III) ( I ) (I) (I)是等价的。
⑥对 x ∈ B 3 x\in B_3 xB3 ( x , φ 1 ( x ) ) ∈ B 1 (x,\varphi_1(x))\in B_1 (x,φ1(x))B1,令 { f 1 ( x ) = φ 1 ( x ) f 2 ( x ) = φ 2 ( x , φ 1 ( x ) ) ⋯ f k + 1 ( x ) = φ k + 1 ( x , φ 1 ( x ) ) \begin{cases} f_1(x)=\varphi_1(x)\\ f_2(x)=\varphi_2(x,\varphi_1(x))\\ \cdots\\ f_{k+1}(x)=\varphi_{k+1}(x,\varphi_1(x)) \end{cases} f1(x)=φ1(x)f2(x)=φ2(x,φ1(x))fk+1(x)=φk+1(x,φ1(x)) f ( x ) = ( f 1 ( x ) , ⋯   , f k + 1 ( x ) ) f(x)=(f_1(x),\cdots,f_{k+1}(x)) f(x)=(f1(x),,fk+1(x)) B 3 B_3 B3上有定义且由构造 f ( x ) f(x) f(x)是连续可微的,同时 { f 1 ( x 0 ) = φ 1 ( x 0 ) = y 1 0 f 2 ( x 0 ) = φ 2 ( x 0 ′ ) = y 2 0 ⋯ f k + 1 ( x ) = φ k + 1 ( x 0 ′ ) = y k + 1 0 \begin{cases} f_1(x_0)=\varphi_1(x_0)=y_1^0\\ f_2(x_0)=\varphi_2(x_0^\prime)=y_2^0\\ \cdots\\ f_{k+1}(x)=\varphi_{k+1}(x_0^\prime)=y_{k+1}^0 \end{cases} f1(x0)=φ1(x0)=y10f2(x0)=φ2(x0)=y20fk+1(x)=φk+1(x0)=yk+10并且对任意的 x ∈ B 3 x\in B_3 xB3,都有 { F 1 ( x , f ( x ) ) = g ( x , φ 1 ( x ) ) = 0 F 2 ( x , f ( x ) ) = F 2 ( x , φ 1 ( x ) , φ ( x , φ 1 ( x ) ) = 0 ⋯ F k + 1 ( x , f ( x ) ) = F k + 1 ( x , φ 1 ( x ) , φ ( x , φ 1 ( x ) ) = 0 \begin{cases} F_1(x,f(x))=g(x,\varphi_1(x))=0\\ F_2(x,f(x))=F_2(x,\varphi_1(x),\varphi(x,\varphi_1(x))=0\\ \cdots\\ F_{k+1}(x,f(x))=F_{k+1}(x,\varphi_1(x),\varphi(x,\varphi_1(x))=0 \end{cases} F1(x,f(x))=g(x,φ1(x))=0F2(x,f(x))=F2(x,φ1(x),φ(x,φ1(x))=0Fk+1(x,f(x))=Fk+1(x,φ1(x),φ(x,φ1(x))=0此时 f ( x ) ∈ B 5 = B ( y 0 , min ⁡ ( δ 3 , δ 4 ) ) < δ 1 f(x)\in B_5=B(y_0,\min(\delta_3,\delta_4))<\delta_1 f(x)B5=B(y0,min(δ3,δ4))<δ1 B 3 × B 5 ⊂ B 1 ⊂ G B_3\times B_5 \subset B_1 \subset G B3×B5B1G,偏导数只要左右两边求偏导,即可证得导数应当满足的方程组,并且由于 ( I ) (I) (I) ( I I I ) (III) (III)是等价的, f f f还是唯一的。由数学归纳法,定理14.8成立。

逆映射定理

为了阐述逆映射定理,首先要理解 微 分 同 胚 ‾ \underline{微分同胚} 局 部 微 分 同 胚 ‾ \underline{局部微分同胚} 的概念,首先要理解何谓同胚。
X ⊂ R n , Y ⊂ R m X\subset R^n,Y\subset R^m XRn,YRm ϕ : X → Y \phi:X\to Y ϕ:XY n n n m m m维向量函数
(1)如果 ∀ x 1 , x 2 ∈ X \forall x_1,x_2\in X x1,x2X ϕ ( x 1 ) ≠ ϕ ( x 2 ) \phi(x_1)\neq \phi(x_2) ϕ(x1)=ϕ(x2),则称 ϕ \phi ϕ是单射
(2)如果 ϕ ( X ) = Y \phi(X)=Y ϕ(X)=Y,则称 ϕ \phi ϕ为满射
如果 ϕ \phi ϕ既是单射,又是满射,那么,存在逆映射 φ : Y → X \varphi:Y\to X φ:YX,该逆映射同时满足:
(1) ϕ ( φ ( y ) ) = y ∀ y ∈ Y \phi(\varphi(y))=y\quad\forall y\in Y ϕ(φ(y))=yyY
(2) φ ( ϕ ( x ) ) = x ∀ x ∈ X \varphi(\phi(x))=x\quad\forall x\in X φ(ϕ(x))=xxX
如果 ϕ \phi ϕ是连续的, φ \varphi φ也是连续的,则称 ϕ \phi ϕ X X X Y Y Y上的同胚映射,如果 ϕ \phi ϕ是连续可微的, φ \varphi φ也是连续可微的,则称 ϕ \phi ϕ X X X Y Y Y的微分同胚映射。那么何谓局部微分同胚呢? Ω ⊂ R n \Omega\subset R^n ΩRn是开集, Y ⊂ R m Y\subset R^m YRm ϕ : Ω → Y \phi:\Omega\to Y ϕ:ΩY,对 x 0 ∈ Ω x_0\in \Omega x0Ω,如果存在包含 x 0 x_0 x0的一个开集 G 1 ⊂ Ω G_1\subset \Omega G1Ω,以及包含 y 0 y_0 y0的一个开集 G 2 ⊂ Y G_2\subset Y G2Y,使得 ϕ \phi ϕ G 1 G_1 G1 G 2 G_2 G2的微分同胚映射,则称 ϕ \phi ϕ x 0 x_0 x0处局部微分同胚。于是,我们可以给出逆映射定理。

定理14.9 ϕ : Ω → R n \phi:\Omega\to R^n ϕ:ΩRn是开集 Ω ⊂ R n \Omega\subset R^n ΩRn上的连续可微映射, x 0 ∈ Ω x_0\in \Omega x0Ω,如果 det ⁡ D ϕ ( x 0 ) ≠ 0 \det D\phi(x_0)\neq 0 detDϕ(x0)=0,则 ϕ \phi ϕ x 0 x_0 x0处局部微分同胚

我们先来整理定理的结论:所谓 ϕ \phi ϕ x 0 x_0 x0处微分同胚,有两层含义:
(1) ϕ \phi ϕ在包含 x 0 x_0 x0的某个开集 G 1 ( G 1 ⊂ Ω ) G_1(G_1\subset \Omega) G1(G1Ω)上存在逆映射
(2) ϕ ( G 1 ) \phi(G_1) ϕ(G1)也是开集,并且 ϕ , ϕ − 1 \phi,\phi^{-1} ϕ,ϕ1都是连续可微的

因此,我们只需要证明这两点即可,而证明第二点用到的就是隐函数存在定理。

证:
F i ( x , y ) = y i − φ i ( x ) ( i = 1 , ⋯   , n ) F_i(x,y)=y_i-\varphi_i(x)(i=1,\cdots,n) Fi(x,y)=yiφi(x)(i=1,,n),令 F ( x , y ) = ( F 1 ( x , y ) , ⋯   , F n ( x , y ) ) F(x,y)=(F_1(x,y),\cdots,F_n(x,y)) F(x,y)=(F1(x,y),,Fn(x,y)) y 0 = φ ( x 0 ) y_0=\varphi(x_0) y0=φ(x0),有 F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0,同时 ∂ ( F 1 , ⋯   , F n ) ∂ ( x 1 , ⋯   , x n ) ( x 0 , y 0 ) = det ⁡ D φ ( x 0 ) ≠ 0 \frac{\partial(F_1,\cdots,F_n)}{\partial(x_1,\cdots,x_n)}(x_0,y_0)=\det D \varphi(x_0)\neq 0 (x1,,xn)(F1,,Fn)(x0,y0)=detDφ(x0)=0由定理14.8,存在 y 0 y_0 y0的邻域 B 1 = B ( y 0 , δ 1 ) B_1=B(y_0,\delta_1) B1=B(y0,δ1) x 0 x_0 x0的邻域 B 2 = B ( x 0 , δ 2 ) ⊂ G B_2=B(x_0,\delta_2)\subset G B2=B(x0,δ2)G,存在唯一的定义在 B 1 B_1 B1的连续可微的 n n n n n n维向量函数 x = ϕ ( y ) x=\phi(y) x=ϕ(y),满足:
(1) ∀ y ∈ B 1 F ( ϕ ( y ) , y ) = 0 , ϕ ( y ) ∈ B 2 \forall y \in B_1\quad F(\phi(y),y)=0,\phi(y)\in B_2 yB1F(ϕ(y),y)=0,ϕ(y)B2
(2) ϕ ( y 0 ) = x 0 \phi(y_0)=x_0 ϕ(y0)=x0
(3) D ϕ ( y ) = D − 1 φ ( ϕ ( y ) ) ∀ y ∈ B 1 D\phi (y)=D^{-1}\varphi(\phi(y))\quad \forall y\in B_1 Dϕ(y)=D1φ(ϕ(y))yB1
S = { x ∈ B 2 : φ ( x ) ∈ B 1 } S=\{x\in B_2:\varphi(x)\in B_1\} S={xB2:φ(x)B1},下面证明 S S S是一个开集,对任意的 x ∈ S x\in S xS B 2 B_2 B2是开集,存在 δ 3 > 0 \delta_3>0 δ3>0,有 B ( x , δ 3 ) ⊂ B 2 B(x,\delta_3)\subset B_2 B(x,δ3)B2 φ ( x ) ∈ B 1 \varphi(x)\in B_1 φ(x)B1,由 B 1 B_1 B1是开集,存在 δ 4 > 0 \delta_4>0 δ4>0,有 B ( φ ( x ) , δ 4 ) ⊂ B 1 B(\varphi(x),\delta_4)\subset B_1 B(φ(x),δ4)B1再由 φ \varphi φ的连续性,存在 δ 5 < δ 3 \delta_5<\delta_3 δ5<δ3,满足:当 x ′ ∈ B ( x , δ 5 ) x^\prime\in B(x,\delta_5) xB(x,δ5)时,都有 φ ( x ′ ) ∈ B ( φ ( x ) , δ 4 ) \varphi(x^\prime) \in B(\varphi(x),\delta_4) φ(x)B(φ(x),δ4)因此 B ( x , δ 5 ) ⊂ S B(x,\delta_5) \subset S B(x,δ5)S从而 S S S是开集,同时 φ ( S ) = B 1 \varphi(S)=B_1 φ(S)=B1 φ \varphi φ S S S B 1 B_1 B1的连续可微映射,由 ϕ \phi ϕ的唯一性, φ \varphi φ是单射,同时, ϕ \phi ϕ φ \varphi φ的逆映射,由隐函数存在定理,两者均连续可微,因此, φ \varphi φ x 0 x_0 x0处局部微分同胚。

定理14.10 φ : R n → R n \varphi:R^n\to R^n φ:RnRn是开集 G G G上的连续可微映射,并且 det ⁡ D φ ( x ) ≠ 0 ∀ x ∈ G \det D\varphi(x)\neq 0\quad \forall x\in G detDφ(x)=0xG,则 φ \varphi φ G G G的任意开子集映成开集

证:
对任意的开集 Ω ⊂ G \Omega\subset G ΩG,对任意的 x ∈ Ω x\in \Omega xΩ,存在包含 x x x的开集 Ω x ⊂ Ω \Omega_x\subset \Omega ΩxΩ,使得 φ \varphi φ Ω x \Omega_x Ωx φ ( Ω x ) \varphi(\Omega_x) φ(Ωx)的微分同胚映射, φ ( Ω x ) \varphi(\Omega_x) φ(Ωx)是开集。由于 Ω = ⋃ x ∈ Ω Ω x \Omega=\bigcup_{x\in \Omega}\Omega_x Ω=xΩΩx因此 φ ( Ω ) = ⋃ x ∈ Ω φ ( Ω x ) \varphi(\Omega)=\bigcup_{x\in \Omega}\varphi(\Omega_x) φ(Ω)=xΩφ(Ωx)由于开集的任意并是开集,因此, φ ( Ω ) \varphi(\Omega) φ(Ω)是开集。

虽然向量函数的Jocobi矩阵起到了导数的作用,在一维情形下,如果连续可微,且导数在开区间上不为0,就可以推出函数是严格单调的,从而存在逆映射,但在高维空间上并非如此。

例14.2 雅克比行列式为0推不出单射 φ ( x , y ) : { u = x 2 − y 2 v = 2 x y \varphi(x,y):\begin{cases} u=x^2-y^2\\ v=2xy \end{cases} φ(x,y):{u=x2y2v=2xy Ω = R 2 / { ( 0 , 0 ) } \Omega=R^2/\{(0,0)\} Ω=R2/{(0,0)},则 φ \varphi φ Ω \Omega Ω上的雅克比行列式恒不为0 det ⁡ D φ ( x , y ) = 4 ( x 2 + y 2 ) > 0 ∀ ( x , y ) ≠ ( 0 , 0 ) \det D\varphi(x,y)=4(x^2+y^2)>0\quad\forall (x,y)\neq (0,0) detDφ(x,y)=4(x2+y2)>0(x,y)=(0,0) φ ( x , y ) = φ ( − x , − y ) \varphi(x,y)=\varphi(-x,-y) φ(x,y)=φ(x,y),从而 φ ( x , y ) \varphi(x,y) φ(x,y) Ω \Omega Ω上不是单射。

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值