数学分析 多元函数微分学(第17章)

一.可微性
1.可微性与全微分:
在这里插入图片描述
2.偏导数:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.可微性条件

对一元函数,可微和可导是等价的;但对多元函数,即使偏导数都存在,该函数也不一定可微
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(1)可微的必要条件:

定理17.1:若二元函数 f f f在其定义域内1点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微,则 f f f在该点处关于每个自变量的偏导数都存在,且(1)式中的 A = f x ( x 0 , y 0 ) , B = f y ( x 0 , y 0 ) A=f_x(x_0,y_0),B=f_y(x_0,y_0) A=fx(x0,y0),B=fy(x0,y0)因此,函数 f f f在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的全微分(2)可唯一地表示为 d f   ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) ⋅ Δ x + f y ( x 0 , y 0 ) ⋅ Δ y df\,|_{(x_0,y_0)}=f_x(x_0,y_0)·Δx+f_y(x_0,y_0)·Δy df(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy与一元函数的情况相同,由于自变量的增量等于自变量的微分,即 Δ x = d x , Δ y = d y Δx=dx,Δy=dy Δx=dx,Δy=dy f f f在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的全微分又可写为 d z = f x ( x 0 , y 0 ) d x + f y ( x 0 , y 0 ) d y dz=f_x(x_0,y_0)dx+f_y(x_0,y_0)dy dz=fx(x0,y0)dx+fy(x0,y0)dy
若函数 f f f在区域 D D D上每1点 ( x , y ) (x,y) (x,y)都可微,则称函数 f f f在区域 D D D上可微,且 f f f D D D上的全微分为 d f ( x , y ) = f x ( x , y ) d x + f y ( x , y ) d y ( 8 ) df(x,y)=f_x(x,y)dx+f_y(x,y)dy\qquad(8) df(x,y)=fx(x,y)dx+fy(x,y)dy(8)

(2)可微的充分条件:

定理17.2:若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内存在,且 f x f_x fx f y f_y fy在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则函数 f f f在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微
在这里插入图片描述
在这里插入图片描述

(3)中值公式:

定理17.2证明过程中出现的(9)式,是二元函数的1个中值公式,可概括为下述定理:
定理17.3:设函数 f f f在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内存在偏导数,若 ( x , y ) (x,y) (x,y)属于该邻域,则 ∃ ξ = x 0 + θ 1 ( x − x 0 ) ∃\xi=x_0+θ_1(x-x_0) ξ=x0+θ1(xx0) η = y 0 + θ 2 ( y − y 0 )   ( 0 < θ 1 , θ 2 < 1 ) η=y_0+θ_2(y-y_0)\,(0<θ_1,θ_2<1) η=y0+θ2(yy0)(0<θ1,θ2<1),使得 f ( x , y ) − f ( x 0 , y 0 ) = f x ( ξ , y ) ( x − x 0 ) + f y ( x 0 , η ) ( y − y 0 ) ( 12 ) f(x,y)-f(x_0,y_0)=f_x(\xi,y)(x-x_0)+f_y(x_0,η)(y-y_0)\qquad(12) f(x,y)f(x0,y0)=fx(ξ,y)(xx0)+fy(x0,η)(yy0)(12)

4.可微性的几何意义及应用
(1)切平面:
在这里插入图片描述
(2)切平面的存在性:

定理17.4:曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P ( x 0 , y 0 , f ( x 0 , y 0 ) ) P(x_0,y_0,f(x_0,y_0)) P(x0,y0,f(x0,y0))处存在不平行于 z z z轴的切平面 Π Π Π的充要条件是:函数 f f f在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处可微
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)法线:
在这里插入图片描述
(4)全微分的几何意义:
在这里插入图片描述
二.复合函数微分法
1.复合函数求导法则
(1)复合函数:
在这里插入图片描述
(2)链式法则:

定理17.5:若函数 x = φ ( s , t ) , y = ψ ( s , t ) x=φ(s,t),y=ψ(s,t) x=φ(s,t),y=ψ(s,t)在点 ( s , t ) ∈ D (s,t)∈D (s,t)D处可微,函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) = ( φ ( s , t ) , ψ ( s , t ) ) (x,y)=(φ(s,t),ψ(s,t)) (x,y)=(φ(s,t),ψ(s,t))处可微,则复合函数 z = f ( φ ( s , t ) , ψ ( s , t ) ) z=f(φ(s,t),ψ(s,t)) z=f(φ(s,t),ψ(s,t))在点 ( s , t ) (s,t) (s,t)处可微,且它关于 s , t s,t s,t的偏导数分别为: ∂ z ∂ s ∣ ( s , t ) = ∂ z ∂ x ∣ ( x , y ) ∂ x ∂ s ∣ ( s , t ) + ∂ z ∂ y ∣ ( x , y ) ∂ y ∂ s ∣ ( s , t ) ∂ z ∂ t ∣ ( s , t ) = ∂ z ∂ x ∣ ( x , y ) ∂ x ∂ t ∣ ( s , t ) + ∂ z ∂ y ∣ ( x , y ) ∂ y ∂ t ∣ ( s , t ) ( 4 ) \begin{matrix}\frac{\partial z}{\partial s}|_{(s,t)}=\frac{\partial z}{\partial x}|_{(x,y)}\frac{\partial x}{\partial s}|_{(s,t)}+\frac{\partial z}{\partial y}|_{(x,y)}\frac{\partial y}{\partial s}|_{(s,t)}\\\frac{\partial z}{\partial t}|_{(s,t)}=\frac{\partial z}{\partial x}|_{(x,y)}\frac{\partial x}{\partial t}|_{(s,t)}+\frac{\partial z}{\partial y}|_{(x,y)}\frac{\partial y}{\partial t}|_{(s,t)}\end{matrix}\qquad(4) sz(s,t)=xz(x,y)sx(s,t)+yz(x,y)sy(s,t)tz(s,t)=xz(x,y)tx(s,t)+yz(x,y)ty(s,t)(4)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意事项:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.复合函数的全微分:
在这里插入图片描述
三.方向导数与梯度
1.方向导数:
在这里插入图片描述
2.方向导数与偏导数的关系:
在这里插入图片描述

定理17.6:若函数 f f f在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处可微,则 f f f在点 P 0 P_0 P0处沿任一方向 l l l的方向导数都存在,且 f l ( P 0 ) = f x ( P 0 ) c o s α + f y ( P 0 ) c o s β + f z ( P 0 ) c o s γ ( 1 ) f_l(P_0)=f_x(P_0)cosα+f_y(P_0)cosβ+f_z(P_0)cosγ\qquad(1) fl(P0)=fx(P0)cosα+fy(P0)cosβ+fz(P0)cosγ(1)其中 c o s α , c o s β , c o s γ cosα,cosβ,cosγ cosα,cosβ,cosγ为方向 l l l的方向余弦
在这里插入图片描述

3.方向导数的存在性:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4.梯度:
在这里插入图片描述
四.泰勒公式与极限问题
1.高阶偏导数
(1)定义:
在这里插入图片描述
(2)混合偏导数相等(累次极限次序可交换)的条件:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理17.7:若 f x y ( x 0 , y 0 ) , f y x ( x 0 , y 0 ) f_{xy}(x_0,y_0),f_{yx}(x_0,y_0) fxy(x0,y0),fyx(x0,y0)都在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则 f x y ( x 0 , y 0 ) = f y x ( x 0 , y 0 ) ( 3 ) f_{xy}(x_0,y_0)=f_{yx}(x_0,y_0)\qquad(3) fxy(x0,y0)=fyx(x0,y0)(3)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)复合函数的高阶偏导数:
在这里插入图片描述
在这里插入图片描述
2.中值定理与泰勒公式
(1)凸区域:
在这里插入图片描述
在这里插入图片描述
(2)中值定理:

定理17.8:设二元函数 f f f在凸区域 D ⊂ R 2 D\sub R^2 DR2上可微,则对 ∀ 2 ∀2 2 P ( a , b ) , Q ( a + h , b + k ) ∈ D , ∃ θ ∈ R   ( 0 < θ < 1 ) P(a,b),Q(a+h,b+k)∈D,∃θ∈R\,(0<θ<1) P(a,b),Q(a+h,b+k)D,θR(0<θ<1),使得 f ( a + h , b + k ) − f ( a , b ) = f x ( a + θ h , b + θ k ) h + f y ( a + θ h , b + θ k ) k ( 8 ) f(a+h,b+k)-f(a,b)\qquad\qquad\qquad\qquad\quad\\=f_x(a+θh,b+θk)h+f_y(a+θh,b+θk)k\qquad(8) f(a+h,b+k)f(a,b)=fx(a+θh,b+θk)h+fy(a+θh,b+θk)k(8)
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
注意:若 P , Q P,Q P,Q为矩形闭域 D D D边界上的点,这些点不是内点 ( ∉ i n t D ) (\notin int D) (/intD),这些点处不能全微分,即不可微,故定理不成立

推论:若函数 f f f在区域 D D D上存在偏导数,且 f x = f y ≡ 0 f_x=f_y\equiv0 fx=fy0 f f f D D D上为常量函数

(3)泰勒定理:

定理17.9:若函数 f f f在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域 U ( P 0 ) U(P_0) U(P0)上有直到 n + 1 n+1 n+1阶的连续偏导数,则对 U ( P 0 ) U(P_0) U(P0)上任1点 ( x 0 + h , y 0 + k ) , ∃ (x_0+h,y_0+k),∃ (x0+h,y0+k),相应的 θ ∈ ( 0 , 1 ) θ∈(0,1) θ(0,1),使得 f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 )   + ( h ∂ ∂ x + k ∂ ∂ y ) f ( x 0 , y 0 )   + 1 2 ! ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 , y 0 )     + . . .   + 1 n ! ( h ∂ ∂ x + k ∂ ∂ y ) n f ( x 0 , y 0 )   + 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k )     ( 11 ) f(x_0+h,y_0+k)=f(x_0,y_0)\\\qquad\qquad\qquad\qquad\qquad\qquad\quad\:+(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})f(x_0,y_0)\\\qquad\qquad\qquad\qquad\qquad\qquad\quad\:+\frac{1}{2!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^2f(x_0,y_0)\\\qquad\qquad\qquad\:\:\,+...\\\qquad\qquad\qquad\qquad\qquad\qquad\quad\:+\frac{1}{n!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^nf(x_0,y_0)\\\qquad\qquad\qquad\qquad\qquad\qquad\quad\:+\frac{1}{(n+1)!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1}f(x_0+θh,y_0+θk)\\\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\:\:\:(11) f(x0+h,y0+k)=f(x0,y0)+(hx+ky)f(x0,y0)+2!1(hx+ky)2f(x0,y0)+...+n!1(hx+ky)nf(x0,y0)+(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)(11)(11)式称为二元函数 f f f在点 P 0 P_0 P0处的 n n n泰勒公式,其中 ( h ∂ ∂ x + k ∂ ∂ y ) m f ( x 0 , y 0 ) = ∑ i = 0 m C m i ∂ m ∂ x i y m − i h i k m − i (h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^mf(x_0,y_0)=\displaystyle\sum_{i=0}^mC^i_m\frac{\partial^m}{\partial x^iy^{m-i}}h^ik^{m-i} (hx+ky)mf(x0,y0)=i=0mCmixiymimhikmi
在这里插入图片描述
在这里插入图片描述

3.极值问题
(1)极值与极值点:
在这里插入图片描述
(2)极值必要条件:

定理17.10:若函数 f f f在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处存在偏导数,且在 P 0 P_0 P0取得极值,则有 f x ( x 0 , y 0 ) = f y ( x 0 , y 0 ) = 0 ( 16 ) f_x(x_0,y_0)=f_y(x_0,y_0)=0\qquad(16) fx(x0,y0)=fy(x0,y0)=0(16)
在这里插入图片描述

(3)海塞矩阵(Hesse Matrix)与极值充分条件:
在这里插入图片描述
在这里插入图片描述

注:①海塞矩阵的一般形式见第23章

定理17.11:设二元函数 f f f在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域 U ( P 0 ) U(P_0) U(P0)上具有二阶连续偏导数,且 P 0 P_0 P0 f f f的稳定点,则当 H f ( P 0 ) H_f(P_0) Hf(P0)是正定矩阵时, f f f P 0 P_0 P0取得极小值;当 H f ( P 0 ) H_f(P_0) Hf(P0)是负定矩阵时, f f f在点 P 0 P_0 P0取得极大值;当 H f ( P 0 ) H_f(P_0) Hf(P0)是不定矩阵时, f f f P 0 P_0 P0不取极值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(4)极值的应用:

求最值:
在这里插入图片描述
如果属于区域的界点成一曲线 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0,求 f f f在此曲线上的最值通常需要用到条件极值方法来解决;如果该曲线有显式方程 y = φ ( x ) y=φ(x) y=φ(x),则上述问题归结为求 g ( x ) = f ( x , φ ( x ) ) g(x)=f(x,φ(x)) g(x)=f(x,φ(x))的极值

最小二乘法:
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值