课堂笔记-多元函数微分

多元函数微分

1.基本概念
一,多元函数的定义
二,多元函数的极限与连续

1.   lim ⁡ P → P 0 f ( P ) = A   ⇔   ∀ ε &gt; 0 , w h e n : 0 &lt; ∣ P − P 0 ∣ &lt; δ , s t : ∣ f ( P ) − A ∣ &lt; ε   1.  \lim _{P \rightarrow P_{0}} f(P)=A  \Leftrightarrow  \forall \varepsilon&gt;0,when:0&lt;\left|P-P_{0}\right|&lt;\delta,st:|f(P)-A|&lt;\varepsilon  1. PP0limf(P)=A  ε>0,when:0<PP0<δ,st:f(P)A<ε 

注 意 P → P 0 方 式 是 任 意 的 , 如 果 任 意 性 不 满 足 , 则 极 限 不 存 在 注意 P \rightarrow P_{0} 方式是任意的,如果任意性不满足,则极限不存在 PP0

连 续 lim ⁡ P → P 0 f ( P ) = f ( P 0 ) 注 意 : 闭 区 域 上 连 续 函 数 有 与 闭 区 间 上 连 续 函 数 类 似 的 性 质 . 连续 \lim _{P \rightarrow P_{0}} f(P)=f\left(P_{0}\right) 注意:闭区域上连续函数有与闭区间上连续函数类似的性质. PP0limf(P)=f(P0).

三,偏导数的定义

一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定
f ( x , y ) 在 点 ( x 0 , y 0 ) 处 对 x 的 偏 导 数 : lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x ( 极 限 存 在 时 ) f(x,y)在点(x_{0},y_{0})处对x的偏导数:\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x}(极限存在时) f(x,y)(x0,y0)x:Δx0limΔxf(x0+Δx,y0)f(x0,y0)

偏 导 数 存 在 ⇎ 连 续 或 极 限 存 在 偏导数存在\nLeftrightarrow连续或极限存在

四,全微分

Δ z = A Δ x + B Δ y + o ( ρ ) ⟹ d z = ∂ z ∂ x d x + ∂ z ∂ y d y \Delta z=A \Delta x+B \Delta y+o(\rho) \Longrightarrow d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y Δz=AΔx+BΔy+o(ρ)dz=xzdx+yzdy

函 数 连 续 ⇎ 偏 导 存 在 . 函数连续 \nLeftrightarrow 偏导存在. .

函 数 可 微 ⇒ 偏 导 存 在 ( 一 阶 , 二 阶 ) . 偏 导 存 在 ⇏ 函 数 可 微 函数可微 \Rightarrow 偏导存在(一阶,二阶). 偏导存在 \nRightarrow 函数可微 (,).

函 数 可 微 ⇒ 函 数 连 续 . 函 数 连 续 ⇏ 函 数 可 微 . 函数可微 \Rightarrow 函数连续. 函数连续 \nRightarrow 函数可微. ..

1. 如 果 ∂ z ∂ x , ∂ z ∂ y 连 续 ⇒ 可 微 . 1.如果\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}连续 \Rightarrow可微. 1.xzyz.

2. 若 f x y 与 f y x 在 ( x 0 , y 0 ) 的 某 邻 域 内 连 续 ⇒ f x y = f y x . 2.若f_{x y}与f_{y x}在(x_{0},y_{0})的某邻域内连续\Rightarrow f_{x y}=f_{y x}. 2.fxyfyx(x0,y0)fxy=fyx.

五,习题

1. f ( x , y ) = { x y x 2 − y 2 x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 , p r o o f : f x y ( 0 , 0 ) ≠ f y x ( 0 , 0 ) 1.\quad \quad f(x, y)=\left\{\begin{array}{ll}{x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}},} &amp; {x^{2}+y^{2} \neq 0} \\ {0,} &amp; {x^{2}+y^{2}=0}\end{array}\right. ,proof:f_{xy}(0,0)\neq f_{yx}(0,0) 1.f(x,y)={xyx2+y2x2y2,0,x2+y2̸=0x2+y2=0,proof:fxy(0,0)̸=fyx(0,0)

x = 0 , ∂ f ( 0 , y ) ∂ x = lim ⁡ Δ x → 0 f ( Δ x , y ) − f ( 0 , y ) Δ x = lim ⁡ Δ x → 0 Δ x y ( Δ x ) 2 − y 2 ( Δ x ) 2 + y 2 − 0 Δ x = − y x=0, \quad \frac{\partial f(0, y)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x , y)-f(0, y)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x y \frac{(\Delta x)^{2}-y^{2}}{(\Delta x)^{2}+y^{2}}-0}{\Delta x}=-y x=0,xf(0,y)=Δx0limΔxf(Δx,y)f(0,y)=Δx0limΔxΔxy(Δx)2+y2(Δx)2y20=y

f x y ( 0 , 0 ) = ∂ ∂ y ( ∂ f ∂ x ) = ∂ 2 f ( 0 , 0 ) ∂ x ∂ y = lim ⁡ y → 0 f x ( 0 , Δ y ) − f x ( 0 , 0 ) Δ y = − 1 f_{x y}(0,0)=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f(0,0)}{\partial x \partial y}=\lim _{y \rightarrow 0} \frac{f_{x}(0,\Delta y)-f_{x}(0,0)}{\Delta y}=-1 fxy(0,0)=y(xf)=xy2f(0,0)=y0limΔyfx(0,Δy)fx(0,0)=1

y = 0 , f y ( x , 0 ) = ∂ f ( x , 0 ) ∂ y = lim ⁡ Δ y → 0 f ( x , Δ y ) − f ( x , 0 ) Δ y = lim ⁡ Δ y → 0 x Δ y ( x 2 − ( Δ y ) 2 ) x 2 + ( Δ y ) 2 − 0 Δ y = x y=0, \quad f_{y}(x, 0)= \frac{\partial f(x, 0)}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, \Delta y)-f(x, 0)}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{\frac{x \Delta y\left(x^{2}-(\Delta y)^{2}\right)}{x^{2}+(\Delta y)^{2}}-0}{\Delta y}=x y=0,fy(x,0)=yf(x,0)=Δy0limΔyf(x,Δy)f(x,0)=Δy0limΔyx2+(Δy)2xΔy(x2(Δy)2)0=x

f y x ( 0 , 0 ) = ∂ 2 f ( 0 , 0 ) ∂ y ∂ x = lim ⁡ Δ x → 0 f y ( Δ x , 0 ) − f y ( 0 , 0 ) Δ x = lim ⁡ Δ x → 0 Δ x − 0 Δ x = 1 f_{y x}(0,0)=\frac{\partial^{2} f(0,0)}{\partial y \partial x}=\lim _{\Delta x \rightarrow 0} \frac{f_{y}(\Delta x, 0)-f_{y}(0,0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x-0}{\Delta x}=1 fyx(0,0)=yx2f(0,0)=Δx0limΔxfy(Δx,0)fy(0,0)=Δx0limΔxΔx0=1

2. p r o o f f ( x , y ) = { x 2 y x 4 + y 2 , x 4 + y 2 ≠ 0 0 , x 4 + y 2 = 0 在 ( 0 , 0 ) 的 极 限 不 存 在 . 2.proof \quad \quad f(x, y)=\left\{\begin{array}{ll}{\frac{x^{2} y}{x^{4}+y^{2}},} &amp; {x^{4}+y^{2} \neq 0} \\ {0,} &amp; {x^{4}+y^{2}=0}\end{array}\right.在(0,0)的极限不存在. 2.prooff(x,y)={x4+y2x2y,0,x4+y2̸=0x4+y2=0(0,0).
设 y = k x 2 , lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) = lim ⁡ ( x , y ) → ( 0 , 0 ) k x 4 x 4 + k 2 x 4 = k 1 + k 2 设y=kx^2,\quad\quad \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{k x^{4}}{x^{4}+k^{2} x^{4}}=\frac{k}{1+k^{2}} y=kx2,(x,y)(0,0)limf(x,y)=(x,y)(0,0)limx4+k2x4kx4=1+k2k

3. p r o o f f ( x , y ) = { x 2 y 1 + α x 4 + y 2 , ( x , y ) ≠ ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) 在 ( 0 , 0 ) 处 连 续 , 其 中 α &gt; 0 3.proof\quad \quad f(x, y)=\left\{\begin{array}{ll}{\frac{x^{2} y^{1+\alpha}}{x^{4}+y^{2}},} &amp; {(x, y) \neq(0,0)} \\ {0,} &amp; {(x, y)=(0,0)}\end{array}\right.在(0,0)处连续,其中\alpha&gt;0 3.prooff(x,y)={x4+y2x2y1+α,0,(x,y)̸=(0,0)(x,y)=(0,0)(0,0)α>0
∣ f ( x , y ) − f ( 0 , 0 ) ∣ = x 2 ∣ y ∣ 1 + α x 4 + y 2 ≤ x 2 ∣ y ∣ 1 + α 2 x 2 ∣ y ∣ = ∣ y ∣ α → 0 t i p : 2 x 2 ∣ y ∣ ≤ x 4 + y 2 |f(x, y)-f(0,0)|=\frac{x^{2}|y|^{1+\alpha }} {x^{4}+y^{2}} \leq \frac{x^{2}|y|^{1+\alpha}}{2 x^{2}|y|}=|y|^\alpha\rightarrow 0 \quad\quad tip:2x^2|y|\leq x^4+y^2 f(x,y)f(0,0)=x4+y2x2y1+α2x2yx2y1+α=yα0tip:2x2yx4+y2

4. 求 u = x y 2 z 3 沿 着 曲 线 x = t , y = 2 t 2 , z = − 2 t 4 在 点 M ( 1 , 2 , − 2 ) 处 切 线 方 向 的 方 向 导 数 . 4.\quad \quad 求u=x y^{2} z^{3}沿着曲线x=t,y=2t^2,z=-2t^4在点M(1,2,-2)处切线方向的方向导数. 4.u=xy2z3沿线x=t,y=2t2,z=2t4M(1,2,2)线.

t i p : 梯 度 grad ⁡ u = { ∂ u ∂ x , ∂ u ∂ v , ∂ u ∂ z } tip:梯度 \operatorname{grad} u=\left\{\frac{\partial u}{\partial x}, \frac{\partial u}{\partial v}, \frac{\partial u}{\partial z}\right\} tip:gradu={xu,vu,zu}

∂ u ∂ l ⃗ ∣ P 0 = ∂ u ∂ x ∣ p 0 cos ⁡ α + ∂ u ∂ y ∣ p 0 cos ⁡ β + ∂ u ∂ z ∣ p 0 cos ⁡ γ \left.\frac{\partial u}{\partial \vec{l}}\right|_{P_{0}} = \left.\frac{\partial u}{\partial x} \right |_{p_{0}} \cos \alpha + \left.\frac{\partial u}{\partial y} \right |_{p_{0}} \cos \beta+\left.\frac{\partial u}{\partial z} \right |_{p_{0}} \cos \gamma l uP0=xup0cosα+yup0cosβ+zup0cosγ

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值