数学Ⅰ基础复习(八)

数学Ⅰ基础复习(7.22更新,复习第九天)

一、极限

  • 有理运算法则

常 用 结 论 : 如 果 lim ⁡ f ( x ) g ( x ) 存 在 , lim ⁡ g ( x ) = 0 ⇒ lim ⁡ f ( x ) = 0 如 果 lim ⁡ f ( x ) g ( x ) = A 且 ≠ 0 , lim ⁡ f ( x ) = 0 ⇒ lim ⁡ g ( x ) = 0 常用结论:如果\lim\frac{f(x)}{g(x)}存在,\lim g(x)=0\Rightarrow\lim f(x)=0\\ 如果\lim\frac{f(x)}{g(x)}=A且\neq0,\lim f(x)=0\Rightarrow\lim g(x)=0\\ limg(x)f(x)limg(x)=0limf(x)=0limg(x)f(x)=A=0limf(x)=0limg(x)=0

例1:(2010,Ⅲ)
如 果 lim ⁡ x → 0 [ 1 x − ( 1 x − a ) e x ] = 1 , a = ? a . 0   b . 1   c . 2   d . 3 解 : L H S = lim ⁡ x → 0 1 − e x x + a = lim ⁡ x → 0 − 1 + a = 1 , a = 2 , 选 c 如果\lim_{x\rightarrow0}[\frac{1}{x}-(\frac{1}{x}-a)e^x]=1,a=?\\ a.0\ b.1\ c.2\ d.3\\ 解:LHS=\lim_{x\rightarrow0}\frac{1-e^x}{x}+a=\lim_{x\rightarrow0}-1+a=1,a=2,选c x0lim[x1(x1a)ex]=1,a=?a.0 b.1 c.2 d.3LHS=x0limx1ex+a=x0lim1+a=1,a=2,c
例2:(2018,Ⅲ)
lim ⁡ x → + ∞ [ ( a x + b ) e 1 x − x ] = 2 , 求 a , b 解 : L H S = lim ⁡ x → + ∞ b e 1 x + lim ⁡ x → + ∞ ( a x e 1 x − x ) = b + lim ⁡ x → + ∞ x ( a e 1 x − 1 ) ∴ a = 1 , 上 式 = b + lim ⁡ x → + ∞ x ( e 1 x − 1 ) = b + 1 = 2 ∴ b = 1 \lim_{x\rightarrow+\infty}[(ax+b)e^\frac{1}{x}-x]=2,求a,b\\ 解:LHS=\lim_{x\rightarrow+\infty}be^\frac{1}{x}+\lim_{x\rightarrow+\infty}(axe^\frac{1}{x}-x)=b+\lim_{x\rightarrow+\infty}x(ae^\frac{1}{x}-1)\therefore a=1,\\上式=b+\lim_{x\rightarrow+\infty}x(e^\frac{1}{x}-1)=b+1=2\therefore b=1 x+lim[(ax+b)ex1x]=2,a,bLHS=x+limbex1+x+lim(axex1x)=b+x+limx(aex11)a=1,=b+x+limx(ex11)=b+1=2b=1
例3:(2004,Ⅲ)
lim ⁡ x → 0 sin ⁡ x e x − a ( cos ⁡ x − b ) = 5 , a = ? , b = ? 解 : lim ⁡ x → 0 e x − a = 0 , a = 1 原 式 = lim ⁡ x → 0 cos ⁡ x − b = 1 − b = 5 , b = − 4 \lim_{x\rightarrow0} \frac{\sin x}{e^x-a}(\cos x-b)=5,a=?,b=?\\ 解:\lim_{x\rightarrow0}e^x-a=0,a=1\\ 原式=\lim_{x\rightarrow0}\cos x-b=1-b=5,b=-4 x0limexasinx(cosxb)=5,a=?,b=?x0limexa=0,a=1=x0limcosxb=1b=5,b=4
例3:(1997,Ⅱ)
lim ⁡ x → − ∞ 4 x 2 + x − 1 + x + 1 x 2 + sin ⁡ x 解 1 : 洛 必 达 可 以 , 但 比 较 复 杂 , 是 ∞ ∞ 型 极 限 。 可 以 先 消 无 穷 因 子 − x , 再 用 商 的 法 则 原 式 = lim ⁡ x → − ∞ 4 + 1 x − 1 x 2 − 1 − 1 x 1 + sin ⁡ x x 2 = 1 解 2 : 原 式 = lim ⁡ x → − ∞ 4 x 2 + x − 1 x 2 + sin ⁡ x + x x 2 + sin ⁡ x + 1 x 2 + sin ⁡ x = 2 − 1 + 0 = 1 \lim_{x\rightarrow-\infty} \frac{\sqrt{4x^2+x-1}+x+1}{\sqrt{x^2+\sin x}}\\ 解1:洛必达可以,但比较复杂,是\frac{\infty}{\infty}型极限。可以先消无穷因子-x,再用商的法则\\ 原式=\lim_{x\rightarrow-\infty} \frac{\sqrt{4+\frac{1}{x}-\frac{1}{x^2}}-1-\frac{1}{x}}{\sqrt{1+\frac{\sin x}{x^2}}}=1\\ 解2:原式=\lim_{x\rightarrow-\infty}\frac{\sqrt{4x^2+x-1}}{\sqrt{x^2+\sin x}}+\frac{x}{\sqrt{x^2+\sin x}}+\frac{1}{\sqrt{x^2+\sin x}}=2-1+0=1 xlimx2+sinx 4x2+x1 +x+11x,=xlim1+x2sinx 4+x1x21 1x1=12=xlimx2+sinx 4x2+x1 +x2+sinx x+x2+sinx 1=21+0=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信息安全数学基础是信息安全领域的核心内容之一,其主要涉及密码学、数据加密、数字签名等方面的数学算法和理论。 首先是密码学,主要包括对称加密算法和非对称加密算法。对称加密算法使用相同的密钥来进行加密和解密,如DES、AES等;非对称加密算法则使用公钥和私钥进行加密和解密,如RSA、椭圆曲线密码算法等。在复习中需要掌握这些密码算法的原理、加解密过程以及安全性分析。 其次是数据加密,其中最重要的就是基于数论的加密算法,如RSA算法。RSA算法的安全性基于大数因数分解的难题,因此复习时需要了解大数的性质、足够大的素数的生成、欧拉定理以及扩展的欧几里得算法等内容。 最后是数字签名,数字签名是一种用于验证信息完整性和身份认证的技术。复习时需要掌握数字签名的基本原理、过程以及常用的数字签名算法,如RSA数字签名算法、DSA数字签名算法等。 另外,在复习时还需要了解信息安全数学基础中的概率论、离散数学、模运算数学概念和运算规则,因为这些知识在加密算法的分析和设计中扮演了重要的角色。 综上所述,复习信息安全数学基础主要包括对称加密算法、非对称加密算法、数据加密、数字签名等方面的内容。在复习过程中需要理解这些算法的原理、过程和安全性,掌握相关的数学知识和运算规则。通过充分准备,相信可以在期末考试中取得良好的成绩。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值