数学Ⅰ基础复习(六)

数学Ⅰ基础复习(7.20更新,复习第七天)

一、极限

  • 常用求极限方法(8种):

    1. 基本极限

    2. 等价无穷小代换

    3. 有理运算

    4. 洛必达法则

    5. 泰勒公式

    6. 夹逼原理

    7. 单调有界

    8. 定积分定义

      基本极限:

    lim ⁡ x → 0 sin ⁡ x x = 1 lim ⁡ x → 0 ( 1 + x ) 1 x = e   o r   lim ⁡ x → ∞ ( 1 + 1 x ) x = e lim ⁡ x → 0 a x − 1 x = ln ⁡ a lim ⁡ x → ∞ x 1 x = 1 lim ⁡ x → ∞ a 1 x = 1 , a > 0 lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 b m x m + b m − 1 x m − 1 + . . . + b 1 x + b 0 = { ∞ , n > m 0 , n < m a n b m , n = m lim ⁡ x → ∞ x n = { 0 , ∣ x ∣ < 1 ∞ , ∣ x ∣ > 1 1 , x = 1 不 存 在 , x = − 1 lim ⁡ n → ∞ e n x = { 1 , x = 0 + ∞ , x > 0 0 , x < 0 \lim_{x\rightarrow0}\frac{\sin x}{x}=1\\ \lim_{x\rightarrow0}(1+x)^\frac{1}{x}=e\ or\ \lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e\\ \lim_{x\rightarrow0}\frac{a^x-1}{x}=\ln a\\ \lim_{x\rightarrow\infty}x^\frac{1}{x}=1\\ \lim_{x\rightarrow\infty}a^\frac{1}{x}=1,a>0\\ \lim_{x\rightarrow\infty}\frac{a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0}{b_mx^m+b_{m-1}x^{m-1}+...+b_1x+b_0}=\begin{cases} \infty,n>m\\0,n<m\\ \frac{a_n}{b_m},n=m\end{cases}\\ \lim_{x\rightarrow\infty}x^n=\begin{cases} 0,|x|<1\\\infty,|x|>1\\ 1,x=1\\不存在,x=-1\end{cases}\\ \lim_{n\rightarrow\infty}e^{nx}=\begin{cases} 1,x=0\\+\infty,x>0\\ 0,x<0\end{cases}\\ x0limxsinx=1x0lim(1+x)x1=e or xlim(1+x1)x=ex0limxax1=lnaxlimxx1=1xlimax1=1,a>0xlimbmxm+bm1xm1+...+b1x+b0anxn+an1xn1+...+a1x+a0=,n>m0,n<mbman,n=mxlimxn=0,x<1,x>11,x=1,x=1nlimenx=1,x=0+,x>00,x<0

    重点1:
    1 ∞ 型 极 限 思 路 : ( 一 般 方 法 步 骤 ) 凑 成 形 如 ( ( 1 + x ) 1 x ) α ( x ) 的 形 式 ( 简 单 推 论 ) 如 果 lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ , lim ⁡ α ( x ) β ( x ) = A , 则 lim ⁡ ( 1 + α ( x ) ) β ( x ) = e A ( 简 单 方 法 步 骤 ) 1. 写 标 准 形 式 : 原 式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) 2. 求 极 限 : lim ⁡ α ( x ) β ( x ) = A 3. 写 结 果 : 原 式 = e A 1^\infty型极限思路: \\(一般方法步骤)凑成形如((1+x)\frac{1}{x})^{\alpha(x)}的形式 \\(简单推论)如果\lim \alpha(x)=0,\lim \beta(x)=\infty,\lim \alpha(x)\beta(x)=A,则\lim(1+\alpha(x))^{\beta(x)}=e^A \\(简单方法步骤)1.写标准形式:原式=\lim[1+\alpha(x)]^{\beta(x)}\\ 2.求极限:\lim \alpha(x)\beta(x)=A\\ 3.写结果:原式=e^A\\ 1:()((1+x)x1)α(x)()limα(x)=0,limβ(x)=,limα(x)β(x)=Alim(1+α(x))β(x)=eA()1.=lim[1+α(x)]β(x)2.limα(x)β(x)=A3.=eA
    例1:
    lim ⁡ n → ∞ n n + 1 ( n + 1 ) n sin ⁡ 1 n 解 : 原 式 = lim ⁡ n → ∞ ( n n + 1 ) n n sin ⁡ 1 n = lim ⁡ n → ∞ 1 ( 1 + 1 n ) n sin ⁡ 1 n 1 n = 1 e 总 结 : 两 个 考 点 : lim ⁡ x → 0 sin ⁡ x x = 1 , lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{n\rightarrow\infty}\frac{n^{n+1}}{(n+1)^n}\sin \frac{1}{n}\\ 解:原式=\lim_{n\rightarrow\infty}(\frac{n}{n+1})^nn\sin \frac{1}{n} \\=\lim_{n\rightarrow\infty}\frac{1}{(1+\frac{1}{n})^n}\frac{\sin \frac{1}{n}}{\frac{1}{n}}=\frac{1}{e} \\总结:两个考点:\lim_{x\rightarrow0}\frac{\sin x}{x}=1,\lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e nlim(n+1)nnn+1sinn1:=nlim(n+1n)nnsinn1=nlim(1+n1)n1n1sinn1=e1x0limxsinx=1xlim(1+x1)x=e
    例2:(1997,Ⅱ)
    lim ⁡ x → 0 + ( cos ⁡ x ) π x = 解 : 1 ∞ 型 极 限 , 三 步 : ( 1 ) 写 标 准 式 : 原 式 = lim ⁡ x → 0 + [ 1 + ( cos ⁡ x − 1 ) ] π x ( lim ⁡ x → 0 + cos ⁡ x − 1 = 0 , lim ⁡ x → 0 + π x = ∞ ) ( 2 ) 求 极 限 : lim ⁡ x → 0 + ( cos ⁡ x − 1 ) π x = lim ⁡ x → 0 + − π sin ⁡ x 2 x ( 洛 必 达 ) 或 者 = lim ⁡ x → 0 + − x π 2 x ( 等 价 无 穷 小 替 换 ) = − π 2 ( 3 ) 写 结 果 : 原 式 = e − π 2 总 结 : 使 用 简 单 方 法 可 以 不 必 凑 α ( x ) 和 β ( x ) 的 关 系 式 , 直 接 求 α ( x ) β ( x ) 的 极 限 即 可 \lim_{x\rightarrow0^+}(\cos\sqrt x)^{\frac{\pi}{x}}=\\ 解:1^\infty型极限,三步:\\ (1)写标准式:原式=\lim_{x\rightarrow0^+}[1+(\cos\sqrt x-1)]^{\frac{\pi}{x}}\\ (\lim_{x\rightarrow0^+}\cos\sqrt x-1=0,\lim_{x\rightarrow0^+}\frac{\pi}{x}=\infty)\\ (2)求极限:\lim_{x\rightarrow0^+}(\cos\sqrt x-1)\frac{\pi}{x}\\ =\lim_{x\rightarrow0^+}-\frac{\pi\sin\sqrt x}{2\sqrt x}(洛必达)\\ 或者=\lim_{x\rightarrow0^+}-\frac{x\pi}{2 x}(等价无穷小替换) \\=-\frac{\pi}{2}\\ (3)写结果:原式=e^{-\frac{\pi}{2}} \\总结:使用简单方法可以不必凑\alpha(x)和\beta(x)的关系式,直接求\alpha(x)\beta(x)的极限即可 x0+lim(cosx )xπ=1(1)=x0+lim[1+(cosx 1)]xπ(x0+limcosx 1=0,x0+limxπ=)(2)x0+lim(cosx 1)xπ=x0+lim2x πsinx ()=x0+lim2xxπ()=2π(3)=e2π使α(x)β(x)α(x)β(x)
    例3:
    lim ⁡ n → ∞ ( a 1 n + b 1 n + c 1 n 3 ) n = 解 : 1 ∞ 型 极 限 , 三 步 : ( 1 ) 写 标 准 式 : 原 式 = lim ⁡ n → ∞ [ 1 + ( a 1 n + b 1 n + c 1 n 3 − 1 ) ] n ( 2 ) 求 极 限 : lim ⁡ n → ∞ ( a 1 n + b 1 n + c 1 n 3 − 1 ) n = ln ⁡ a + ln ⁡ b + ln ⁡ c 3 ( 等 价 无 穷 小 替 换 ) ( 3 ) 写 结 果 : 原 式 = e ln ⁡ a + ln ⁡ b + ln ⁡ c 3 = e ln ⁡ a b c 3 = ( a b c ) 1 3 \lim_{n\rightarrow\infty}(\frac{a^{\frac{1}{n}}+b^{\frac{1}{n}}+c^{\frac{1}{n}}}{3})^n=\\ 解:1^\infty型极限,三步:\\ (1)写标准式:原式=\lim_{n\rightarrow\infty}[1+(\frac{a^{\frac{1}{n}}+b^{\frac{1}{n}}+c^{\frac{1}{n}}}{3}-1)]^n\\ (2)求极限:\lim_{n\rightarrow\infty}(\frac{a^{\frac{1}{n}}+b^{\frac{1}{n}}+c^{\frac{1}{n}}}{3}-1)n\\ =\frac{\ln a+\ln b+\ln c}{3}(等价无穷小替换)\\ (3)写结果:原式=e^{\frac{\ln a+\ln b+\ln c}{3}}=e^{\frac{\ln abc}{3}}=(abc)^{\frac{1}{3}} nlim(3an1+bn1+cn1)n=1(1)=nlim[1+(3an1+bn1+cn11)]n(2)nlim(3an1+bn1+cn11)n=3lna+lnb+lnc()(3)=e3lna+lnb+lnc=e3lnabc=(abc)31
    例4:(2010,Ⅰ)
    lim ⁡ x → ∞ [ x 2 ( x − a ) ( x + b ) ] x 解 : 1 ∞ 型 极 限 , 三 步 : ( 1 ) 写 标 准 式 : 原 式 = lim ⁡ x → ∞ [ 1 + ( x 2 ( x − a ) ( x + b ) − 1 ) ] x ( 2 ) 求 极 限 : lim ⁡ x → ∞ ( x 2 ( x − a ) ( x + b ) − 1 ) x = lim ⁡ x → ∞ ( a − b ) x 2 + a b x x 2 − ( a − b ) x − a b = a − b ( 3 ) 写 结 果 : 原 式 = e a − b \lim_{x\rightarrow\infty}[\frac{x^2}{(x-a)(x+b)}]^x\\ 解:1^\infty型极限,三步:\\ (1)写标准式:原式=\lim_{x\rightarrow\infty}[1+(\frac{x^2}{(x-a)(x+b)}-1)]^x\\ (2)求极限:\lim_{x\rightarrow\infty}(\frac{x^2}{(x-a)(x+b)}-1)x\\ =\lim_{x\rightarrow\infty}\frac{(a-b)x^2+abx}{x^2-(a-b)x-ab}=a-b\\ (3)写结果:原式=e^{a-b} xlim[(xa)(x+b)x2]x1(1)=xlim[1+((xa)(x+b)x21)]x(2)xlim((xa)(x+b)x21)x=xlimx2(ab)xab(ab)x2+abx=ab(3)=eab
    等价无穷小代换:

    (1)代换原则:乘除可换,加减部分可换
    注 意 : 加 减 代 换 条 件 : 若 α ∼ α 1 , β ∼ β 1 , 且 lim ⁡ α 1 β 1 = A ≠ 1 , 则 α − β ∼ α 1 − β 1 若 α ∼ α 1 , β ∼ β 1 , 且 lim ⁡ α 1 β 1 = A ≠ − 1 , 则 α + β ∼ α 1 + β 1 注意:加减代换条件:\\若\alpha \sim\alpha_1,\beta \sim\beta_1,且\lim \frac{\alpha_1}{\beta_1}=A\neq1,则\alpha-\beta\sim\alpha_1-\beta_1 \\若\alpha \sim\alpha_1,\beta \sim\beta_1,且\lim \frac{\alpha_1}{\beta_1}=A\neq-1,则\alpha+\beta\sim\alpha_1+\beta_1 αα1,ββ1,limβ1α1=A=1αβα1β1αα1,ββ1,limβ1α1=A=1α+βα1+β1
    (2)常用等价无穷小:
    当 x → 0 时 , x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 a x − 1 ∼ x l n a ( 1 + x ) α − 1 ∼ α x 1 − cos ⁡ x ∼ 1 2 x 2 补 充 : x − s i n x ∼ arcsin ⁡ x − x ∼ 1 6 x 3 t a n x − x ∼ x − arctan ⁡ x ∼ 1 3 x 3 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 当x\rightarrow0时,\\ x\sim\sin x\sim\tan x\sim\arcsin x\sim\arctan x\sim\ln(1+x)\sim e^x-1 \\a^x-1\sim xlna \\(1+x)^\alpha-1\sim\alpha x \\1-\cos x\sim\frac{1}{2}x^2 \\补充:x-sinx\sim\arcsin x-x\sim\frac{1}{6}x^3\\ tanx-x\sim x-\arctan x\sim\frac{1}{3}x^3\\ x-\ln(1+x)\sim\frac{1}{2}x^2 x0xsinxtanxarcsinxarctanxln(1+x)ex1ax1xlna(1+x)α1αx1cosx21x2xsinxarcsinxx61x3tanxxxarctanx31x3xln(1+x)21x2
    例5:
    lim ⁡ x → ∞ [ x − x 2 ln ⁡ ( 1 + 1 x ) ] 解 : 可 以 用 1 t 倒 代 换 x , 然 后 洛 必 达 , 也 可 以 泰 勒 展 开 。 最 快 的 是 使 用 等 价 无 穷 小 替 换 : 原 式 = lim ⁡ x → ∞ x 2 ( 1 x − ln ⁡ ( 1 + 1 x ) ) = 1 2 \lim_{x\rightarrow\infty}[x-x^2\ln(1+\frac{1}{x})]\\ 解:可以用\frac{1}{t}倒代换x,然后洛必达,也可以泰勒展开。\\ 最快的是使用等价无穷小替换:\\ 原式=\lim_{x\rightarrow\infty}x^2(\frac{1}{x}-\ln(1+\frac{1}{x}))=\frac{1}{2} xlim[xx2ln(1+x1)]t1x使=xlimx2(x1ln(1+x1))=21
    例6:(2016,Ⅲ)
    lim ⁡ x → 0 1 + f ( x ) s i n 2 x − 1 e 3 x − 1 = 2 , 则 lim ⁡ x → 0 f ( x ) = 解 : e 3 x − 1 ∼ 3 x , 1 + f ( x ) s i n 2 x − 1 ∼ 1 2 f ( x ) s i n 2 x ∼ x f ( x ) ∴ lim ⁡ x → 0 1 + f ( x ) s i n 2 x − 1 e 3 x − 1 = lim ⁡ x → 0 f ( x ) 3 = 2 ∴ lim ⁡ x → 0 f ( x ) = 6 \lim_{x\rightarrow0}\frac{\sqrt{1+f(x)sin2x}-1}{e^{3x}-1}=2,则\lim_{x\rightarrow0}f(x)=\\ 解:e^{3x}-1\sim3x,\sqrt{1+f(x)sin2x}-1\sim\frac{1}{2}f(x)sin2x\sim xf(x)\\ \therefore \lim_{x\rightarrow0}\frac{\sqrt{1+f(x)sin2x}-1}{e^{3x}-1}= \lim_{x\rightarrow0}\frac{f(x)}{3}=2\\ \therefore \lim_{x\rightarrow0}f(x)=6 x0lime3x11+f(x)sin2x 1=2,x0limf(x)=e3x13x,1+f(x)sin2x 121f(x)sin2xxf(x)x0lime3x11+f(x)sin2x 1=x0lim3f(x)=2x0limf(x)=6
    例7:(2015,Ⅰ)
    lim ⁡ x → 0 ln ⁡ ( c o s x ) x 2 解 : 原 式 = lim ⁡ x → 0 ln ⁡ ( 1 + c o s x − 1 ) x 2 = − 1 2 \lim_{x\rightarrow0}\frac{\ln(cosx)}{x^2} \\解:原式=\lim_{x\rightarrow0}\frac{\ln(1+cosx-1)}{x^2}=-\frac{1}{2} x0limx2ln(cosx)=x0limx2ln(1+cosx1)=21
    例8:(2009,Ⅲ)

lim ⁡ x → 0 e − e cos ⁡ x ( 1 + x 2 ) 1 3 − 1 解 : ( 1 + x 2 ) 1 3 − 1 ∼ 1 3 x 2 , 分 子 = e ( 1 − e cos ⁡ x − 1 ) ∼ − e ( c o s x − 1 ) ∼ e 2 x 2 ∴ 原 式 = 3 e 2 \lim_{x\rightarrow0}\frac{e-e^{\cos x}}{(1+x^2)^{\frac{1}{3}}-1}\\ 解:(1+x^2)^{\frac{1}{3}}-1\sim\frac{1}{3}x^2,分子=e(1-e^{\cos x-1})\sim -e(cosx-1)\sim\frac{e}{2}x^2\\ \therefore原式=\frac{3e}{2} x0lim(1+x2)311eecosx(1+x2)31131x2,=e(1ecosx1)e(cosx1)2ex2=23e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值