数学Ⅰ基础复习(五)

本文详细介绍了数学I中关于极限的基本概念,包括数列极限、函数极限、极限性质及存在准则。通过夹逼定理和单调有界原理,解释了如何求解极限问题。同时,探讨了无穷小的概念,如高阶、低阶、同阶和等价无穷小。文章还讨论了无穷大的比较,并通过实例分析了无穷大量、无穷小量、有界变量和无界变量的区别。最后,阐述了极限存在的充要条件及其应用。
摘要由CSDN通过智能技术生成

数学Ⅰ基础复习(7.18、19更新,复习第五、六天)

一、极限

基本概念:数列极限、函数极限、极限性质、存在准则、无穷小、无穷大
  • 极限存在准则:夹逼、单调有界

    • 夹逼:主要用在n项和
      ∃ N , 当 n > N 时 , x n ≤ y n ≤ z n , lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a , 则 lim ⁡ n → ∞ y n = a \exist N,当n>N时,x_n\leq y_n\leq z_n,\lim_{n\rightarrow \infty}x_n=\lim_{n\rightarrow \infty}z_n=a,则\lim_{n\rightarrow \infty}y_n=a N,n>Nxnynznnlimxn=nlimzn=anlimyn=a
      单调有界:主要用在递推关系
      x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn)
      单调增、有上界的(单调减、有下界)的数列必有极限

      ​ 步骤:1.证存在(单调有界) 2. a=f(a),两侧取极限求代数方程

      例1:
      lim ⁡ n → ∞ [ n n 2 + 1 + n n 2 + 2 + . . . + n n 2 + n ] 解 : n 项 和 问 题 用 夹 逼 n 2 n 2 + n ≤ n n 2 + 1 + n n 2 + 2 + . . . + n n 2 + n ≤ n 2 n 2 + 1 ∵ lim ⁡ n → ∞ n 2 n 2 + n = lim ⁡ n → ∞ n 2 n 2 + 1 = 1 ∴ lim ⁡ n → ∞ [ n n 2 + 1 + n n 2 + 2 + . . . + n n 2 + n ] = 1 \lim_{n\rightarrow \infty}[\frac{n}{n^2+1}+\frac{n}{n^2+2}+...+\frac{n}{n^2+n}]\\ 解:n项和问题用夹逼\\ \frac{n^2}{n^2+n}\leq\frac{n}{n^2+1}+\frac{n}{n^2+2}+...+\frac{n}{n^2+n}\leq\frac{n^2}{n^2+1}\\ \because \lim_{n\rightarrow \infty}\frac{n^2}{n^2+n}=\lim_{n\rightarrow \infty}\frac{n^2}{n^2+1}=1\\ \therefore \lim_{n\rightarrow \infty}[\frac{n}{n^2+1}+\frac{n}{n^2+2}+...+\frac{n}{n^2+n}]=1 nlim[n2+1n+n2+2n+...+n2+nn]nn2+nn2n2+1n+n2+2n+...+n2+nnn2+1n2nlimn2+nn2=nlimn2+1n2=1nlim[n2+1n+n2+2n+...+n2+nn]=1
      例2:
      lim ⁡ x → 0 + x [ 1 x ] 解 : 取 整 问 题 用 夹 逼 x − 1 < [ x ] ≤ x lim ⁡ x → 0 + x ( 1 x − 1 ) = 1 lim ⁡ x → 0 + x 1 x = 1 ∴ lim ⁡ x → 0 + x [ 1 x ] = 1 \lim_{x\rightarrow 0^+}x[\frac{1}{x}]\\ 解:取整问题用夹逼\\ x-1<[x]\leq x\\ \lim_{x\rightarrow 0^+}x(\frac{1}{x}-1)=1\\ \lim_{x\rightarrow 0^+}x\frac{1}{x}=1\\ \therefore \lim_{x\rightarrow 0^+}x[\frac{1}{x}]=1 x0+limx[x1]x1<[x]xx0+limx(x11)=1x0+limxx1=1x0+limx[x1]=1
      例3:
      $$
      \lim_{n\rightarrow \infty}\frac{2^n}{n!}\

      解1(夹逼):初步判断极限为0,\
      \frac{2^n}{n!}=\frac {222*…2}{123n}\leq\frac {22}{1n}\
      \because \lim_{n\rightarrow \infty} \frac {2
      2}{1n}=0,\frac{2^n}{n!}>0\
      \therefore \lim_{n\rightarrow \infty}\frac{2^n}{n!}=0\
      解2(单调有界):令x_n=\frac{2n}{n!},x_{n=1}=\frac{2{n+1}}{(n+1)!}=x_n\frac{2}{n+1}\
      1.证单调:x_{n+1}-x_n>0 或\frac{x_{n+1}}{x_n}>1\
      此题选除法,\frac{x_{n+1}}{x_n}=\frac{2}{n+1}\leq 1,单调减\
      2.证有界:显然x_n>0\
      3.两侧取极限:x_{n+1}=x_n \frac {2}{n+1},a=a
      0,a=0
      $$

  • 无穷小

    比较:高阶,低阶,同阶,等价,无穷小的阶
    高 阶 : lim ⁡ α ( x ) β ( x ) = 0 , α ( x ) = o ( β ( x ) ) 低 阶 : lim ⁡ α ( x ) β ( x ) = ∞ 同 阶 : lim ⁡ α ( x ) β ( x ) = C ( C ≠ 0 ) 等 价 : lim ⁡ α ( x ) β ( x ) = 1 , α ( x ) ∼ β ( x ) 无 穷 小 的 阶 : lim ⁡ α ( x ) β k ( x ) = C ( C ≠ 0 ) , α ( x ) 为 β ( x ) 的 k 阶 无 穷 小 高阶:\lim \frac{\alpha(x)}{\beta(x)}=0,\alpha(x)=o(\beta(x))\\ 低阶:\lim \frac{\alpha(x)}{\beta(x)}=\infty\\ 同阶:\lim \frac{\alpha(x)}{\beta(x)}=C(C\neq 0)\\ 等价:\lim \frac{\alpha(x)}{\beta(x)}=1,\alpha(x)\sim\beta(x)\\ 无穷小的阶:\lim \frac{\alpha(x)}{\beta^k(x)}=C(C\neq 0),\alpha(x)为\beta(x)的k阶无穷小\\ limβ(x)α(x)=0,α(x)=o(β(x))limβ(x)α(x)=limβ(x)α(x)=C(C=0)limβ(x)α(x)=1,α(x)β(x)limβk(x)α(x)=C(C=0),α(x)β(x)k
    例:(1989,Ⅳ、Ⅴ)
    设 f ( x ) = 2 x + 3 x − 2 , 则 当 x 趋 于 0 时 , ( ) A . f ( x ) 与 x 等 价 B . f ( x ) 与 x 同 阶 非 等 价 C . f ( x ) 比 x 高 阶 D . f ( x ) 比 x 低 阶 解 : lim ⁡ x → 0 2 x + 3 x − 2 x = lim ⁡ x → 0 2 x − 1 x + lim ⁡ x → 0 3 x − 1 x = l n 2 + l n 3 = l n 6 , 选 B 设f(x)=2^x+3^x-2,则当x趋于0时,()\\ A.f(x)与x等价\\ B.f(x)与x同阶非等价\\ C.f(x)比x高阶\\ D.f(x)比x低阶\\ 解:\lim_{x\rightarrow0}\frac{2^x+3^x-2}{x}=\lim_{x\rightarrow0}\frac{2^x-1}{x}+\lim_{x\rightarrow0}\frac{3^x-1}{x}=ln2+ln3=ln6,选B f(x)=2x+3x2x0A.f(x)xB.f(x)xC.f(x)xD.f(x)xx0limx2x+3x2=x0limx2x1+x0limx3x1=ln2+ln3=ln6,B
    性质:

    1. 有限个无穷小的和是无穷小
    2. 有限个无穷小的积是无穷小
    3. 无穷小量与有界量的积是无穷小
  • 无穷大

    常见比较:
    1. x → + ∞ l n α ( x ) < < x β < < a x ( α > 0 , β > 0 , a > 1 ) 2. n → ∞ l n α ( n ) < < n β < < a n < < n ! < < n n ( α > 0 , β > 0 , a > 1 ) 对 数 < 幂 < 指 数 < 阶 乘 < 幂 指 数 1.x\rightarrow +\infty\\ln^\alpha(x)<<x^\beta<<a^x(\alpha>0,\beta>0,a>1)\\ 2.n\rightarrow \infty\\ln^\alpha(n)<<n^\beta<<a^n<<n!<<n^n(\alpha>0,\beta>0,a>1)\\ 对数<幂<指数<阶乘<幂指数 1.x+lnα(x)<<xβ<<ax(α>0,β>0,a>1)2.nlnα(n)<<nβ<<an<<n!<<nn(α>0,β>0,a>1)<<<<
    例1:(2010,Ⅲ)
    设 f ( x ) = ln ⁡ 10 x , g ( x ) = x , h ( x ) = e x 10 , x → ∞ , 有 ( ) 解 : 根 据 常 用 无 穷 大 关 系 : f ( x ) < g ( x ) < h ( x ) 设f(x)=\ln^{10} x,g(x)=x,h(x)=e^{\frac {x}{10}},x\rightarrow \infty,有()\\ 解:根据常用无穷大关系:f(x)<g(x)<h(x) f(x)=ln10x,g(x)=x,h(x)=e10x,x,()f(x)<g(x)<h(x)
    性质:

    1. 无穷大和有界量的和是无穷大
    2. 无穷大和无穷大的积是无穷大

    无穷大与无界变量的区别:

    例:
    x n = { n 2 + n n , 若 n 为 奇 数 , 1 n , 若 n 为 偶 数 , 则 当 n → ∞ 时 , x n 是 ( ) A . 无 穷 大 量 B . 无 穷 小 量 C . 有 界 变 量 D . 无 界 变 量 解 : n 为 奇 数 无 穷 大 , 为 偶 数 无 穷 小 , 选 D x_n=\begin{cases}\frac{n^2+\sqrt n}{n},若n为奇数,\\ \frac{1}{n},若n为偶数\end{cases} ,则当n\rightarrow\infty时,x_n是()\\ A.无穷大量\\ B.无穷小量\\ C.有界变量\\ D.无界变量\\ 解:n为奇数无穷大,为偶数无穷小,选D xn={nn2+n nn1nnxnA.B.C.D.nD

    例1:(1999,Ⅱ)
    对 任 意 ε ∈ ( 0 , 1 ) , ∃ N > 0   当 n > N , 恒 ∣ x n − a ∣ ≤ 2 ε , 是 数 列 x n 收 敛 于 a 的 ( ) 条 件 解 : 根 据 定 义 , 数 列 x n 收 敛 于 a , 对 任 意 ε ∈ ( 0 , 1 ) , ∃ N > 0   当 n > N , 恒 ∣ x n − a ∣ < ε 2 ε 和 ε 等 价 都 可 以 刻 画 无 限 接 近 , 是 充 要 条 件 对任意\varepsilon\in(0,1),\exist N>0\,当n>N,恒|x_n-a|\leq 2\varepsilon,是数列x_n收敛于a的()条件\\ 解:根据定义,数列x_n收敛于a,对任意\varepsilon\in(0,1),\exist N>0\,当n>N,恒|x_n-a|< \varepsilon\\2\varepsilon和\varepsilon等价都可以刻画无限接近,是充要条件 ε(0,1),N>0n>Nxna2εxnaxnaε(0,1),N>0n>Nxna<ε2εε,
    例2:(2015,Ⅲ)
    下 列 不 正 确 的 是 ( ) A . 若 lim ⁡ n → ∞ x n = a , 则 lim ⁡ n → ∞ x 2 n = lim ⁡ n → ∞ x 2 n + 1 = a B . 若 lim ⁡ n → ∞ x 2 n = lim ⁡ n → ∞ x 2 n + 1 = a , 则 lim ⁡ n → ∞ x n = a C . 若 lim ⁡ n → ∞ x n = a , 则 lim ⁡ n → ∞ x 3 n = lim ⁡ n → ∞ x 3 n + 1 = a D . 若 lim ⁡ n → ∞ x 3 n = lim ⁡ n → ∞ x 3 n + 1 = a , 则 lim ⁡ n → ∞ x n = a 解 : D 选 项 未 取 遍 数 列 全 部 项 , 错 误 下列不正确的是()\\ A.若\lim_{n\rightarrow \infty}x_n=a,则\lim_{n\rightarrow \infty}x_{2n}=\lim_{n\rightarrow \infty}x_{2n+1}=a\\ B.若\lim_{n\rightarrow \infty}x_{2n}=\lim_{n\rightarrow \infty}x_{2n+1}=a,则\lim_{n\rightarrow \infty}x_n=a\\ C.若\lim_{n\rightarrow \infty}x_n=a,则\lim_{n\rightarrow \infty}x_{3n}=\lim_{n\rightarrow \infty}x_{3n+1}=a\\ D.若\lim_{n\rightarrow \infty}x_{3n}=\lim_{n\rightarrow \infty}x_{3n+1}=a,则\lim_{n\rightarrow \infty}x_n=a\\ 解:D选项未取遍数列全部项,错误 A.nlimxn=a,nlimx2n=nlimx2n+1=aB.nlimx2n=nlimx2n+1=a,nlimxn=aC.nlimxn=a,nlimx3n=nlimx3n+1=aD.nlimx3n=nlimx3n+1=a,nlimxn=aD
    例1:(1999,三)

当 x → 0 时 , 变 量 1 x 2 s i n 1 x 是 ( ) A . 无 穷 小 B . 无 穷 大 C . 有 界 的 但 不 是 无 穷 小 D . 无 界 的 但 不 是 无 穷 大 解 : 显 然 选 D ∀ M > 0 , δ > 0 , ∃ x n = 1 2 n π + π 2 , y n = 1 2 n π 使 0 < x n < δ , 0 < y n < δ , 此 时 1 x n 2 s i n 1 x n = ( 2 n π + π 2 ) 2 > M 1 y n 2 s i n 1 y n = 0 < M 当x\rightarrow0时,变量\frac{1}{x^2}sin\frac{1}{x}是()\\ A.无穷小\\ B.无穷大\\ C.有界的但不是无穷小\\ D.无界的但不是无穷大\\ 解:显然选D\\ \forall M>0,\delta>0,\exist x_n=\frac{1}{2n\pi+\frac{\pi}{2}} ,y_n=\frac {1}{2n\pi}\\ 使0<x_n<\delta,0<y_n<\delta,此时\\ \frac{1}{x_n^2}sin\frac{1}{x_n}=(2n\pi+\frac{\pi}{2})^2>M\\ \frac{1}{y_n^2}sin\frac{1}{y_n}=0<M x0x21sinx1A.B.C.D.DM>0,δ>0,xn=2nπ+2π1,yn=2nπ1使0<xn<δ,0<yn<δ,xn21sinxn1=2nπ+2π2>Myn21sinyn1=0<M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值