数学Ⅰ基础复习(七)

数学Ⅰ基础复习(7.21更新,复习第八天)

一、极限

  • 等价无穷小代换

    例9:(2006,Ⅱ)
    lim ⁡ x → 0 1 x 3 [ ( 2 + cos ⁡ x 3 ) x − 1 ] 解 1 : 幂 指 函 数 转 换 为 e ln ⁡ f ( x ) 原 式 = lim ⁡ x → 0 1 x 3 [ e x ln ⁡ ( 2 + cos ⁡ x 3 ) − 1 ] = lim ⁡ x → 0 ln ⁡ ( 2 + cos ⁡ x 3 ) x 2 = lim ⁡ x → 0 ( cos ⁡ x − 1 3 ) x 2 = lim ⁡ x → 0 − x 2 6 x 2 = − 1 6 \lim_{x\rightarrow0}\frac{1}{x^3}[(\frac{2+\cos x}{3})^x-1]\\ 解1:幂指函数转换为e^{\ln f(x)}\\ 原式=\lim_{x\rightarrow0}\frac{1}{x^3}[e^{x\ln(\frac{2+\cos x}{3})}-1]=\lim_{x\rightarrow0}\frac{\ln(\frac{2+\cos x}{3})}{x^2}=\lim_{x\rightarrow0}\frac{(\frac{\cos x-1}{3})}{x^2}=\lim_{x\rightarrow0}\frac{-x^2}{6x^2}=-\frac{1}{6} x0limx31[(32+cosx)x1]1elnf(x)=x0limx31[exln(32+cosx)1]=x0limx2ln(32+cosx)=x0limx2(3cosx1)=x0lim6x2x2=61
    推广:
    原 有 等 价 无 穷 小 : ( 1 + x ) α − 1 ∼ α x , ( x → 0 ) 可 以 推 广 : 若 α ( x ) → 0 , α ( x ) β ( x ) → 0 , 则 ( 1 + α ( x ) ) β ( x ) − 1 ∼ α ( x ) β ( x ) ∴ 上 题 解 2 如 下 : 原 式 = lim ⁡ x → 0 1 x 3 [ ( 1 + − 1 + cos ⁡ x 3 ) x − 1 ] = lim ⁡ x → 0 1 3 x 3 x ( c o s x − 1 ) = − 1 6 原有等价无穷小:(1+x)^\alpha-1\sim\alpha x,(x\rightarrow0) 可以推广:若\alpha(x)\rightarrow0,\alpha(x)\beta(x)\rightarrow0,\\则(1+\alpha(x))^{\beta(x)}-1\sim\alpha(x)\beta(x)\\ \therefore 上题解2如下:\\ 原式=\lim_{x\rightarrow0}\frac{1}{x^3}[(1+\frac{-1+\cos x}{3})^x-1]=\lim_{x\rightarrow0}\frac{1}{3x^3}x(cosx-1)=-\frac{1}{6} (1+x)α1αx,(x0)广α(x)0,α(x)β(x)0(1+α(x))β(x)1α(x)β(x)2=x0limx31[(1+31+cosx)x1]=x0lim3x31x(cosx1)=61
    例10:
    lim ⁡ x → 0 arcsin ⁡ x − sin ⁡ x arctan ⁡ x − tan ⁡ x 解 : 0 0 型 极 限 , 可 用 洛 必 达 , 等 价 代 换 , 泰 勒 洛 必 达 过 于 复 杂 不 考 虑 , 初 步 观 察 等 价 代 换 不 满 足 , 可 用 泰 勒 展 开 求 解 但 本 题 也 可 用 等 价 代 换 原 式 = lim ⁡ x → 0 arcsin ⁡ x − x + x − sin ⁡ x arctan ⁡ x − x + x − tan ⁡ x = x 3 6 + x 3 6 − x 3 3 − x 3 3 = − 1 2 \lim_{x\rightarrow0}\frac{\arcsin x-\sin x}{\arctan x-\tan x}\\ 解:\frac{0}{0}型极限,可用洛必达,等价代换,泰勒\\ 洛必达过于复杂不考虑,初步观察等价代换不满足,可用泰勒展开求解\\ 但本题也可用等价代换\\ 原式=\lim_{x\rightarrow0}\frac{\arcsin x-x+x-\sin x}{\arctan x-x+x-\tan x}=\frac{\frac{x^3}{6}+\frac{x^3}{6}}{-\frac{x^3}{3}-\frac{x^3}{3}}=-\frac{1}{2} x0limarctanxtanxarcsinxsinx00=x0limarctanxx+xtanxarcsinxx+xsinx=3x33x36x3+6x3=21
    例11:(2009,Ⅱ)
    lim ⁡ x → 0 ( 1 − cos ⁡ x ) [ x − ln ⁡ ( 1 + t a n x ) ] sin ⁡ 4 x 解 : 原 式 = lim ⁡ x → 0 x 2 tan ⁡ 2 x 2 ∗ 2 x 4 = 1 4 \lim_{x\rightarrow0}\frac{(1-\cos x)[x-\ln(1+tanx)]}{\sin^4 x}\\ 解:原式=\lim_{x\rightarrow0}\frac{x^2\tan^2x}{2*2x^4}=\frac{1}{4}\\ x0limsin4x(1cosx)[xln(1+tanx)]=x0lim22x4x2tan2x=41
    例12:
    lim ⁡ x → ∞ ( n tan ⁡ 1 n ) n 2 解 : 1 ∞ 型 极 限 , 三 步 骤 : 1. 写 标 准 式 : 原 式 = lim ⁡ x → ∞ ( 1 + n tan ⁡ 1 n − 1 ) n 2 2. 求 积 式 极 限 : lim ⁡ x → ∞ tan ⁡ 1 n − 1 n 1 n n 2 = lim ⁡ x → ∞ tan ⁡ 1 n − 1 n 1 n 3 = 1 3 3. 写 结 果 : 原 式 = e 1 3 \lim_{x\rightarrow\infty}(n\tan\frac{1}{n})^{n^2}\\ 解:1^\infty型极限,三步骤:\\ 1.写标准式:原式=\lim_{x\rightarrow\infty}(1+n\tan\frac{1}{n}-1)^{n^2}\\ 2.求积式极限:\lim_{x\rightarrow\infty}\frac{\tan\frac{1}{n}-\frac{1}{n}}{\frac{1}{n}}n^2=\lim_{x\rightarrow\infty}\frac{\tan\frac{1}{n}-\frac{1}{n}}{\frac{1}{n^3}}=\frac{1}{3}\\ 3.写结果:原式=e^\frac{1}{3} xlim(ntann1)n211.=xlim(1+ntann11)n22.xlimn1tann1n1n2=xlimn31tann1n1=313.=e31

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值