Josh的学习笔记之高等数学(Part 1)

1. 常见等价无穷小

sin ⁡ x ∼ x \sin x \sim x sinxx tan ⁡ x ∼ x \tan x \sim x tanxx arcsin ⁡ x ∼ x \arcsin x \sim x arcsinxx
arctan ⁡ x ∼ x \arctan x \sim x arctanxx ( 1 − cos ⁡ x ) ∼ x 2 2 \left( 1 - \cos x \right) \sim \frac{x^2}{2} (1cosx)2x2 ln ⁡ ( 1 + x ) ∼ x \ln (1+x) \sim x ln(1+x)x
( e x − 1 ) ∼ x \left( e^x -1 \right) \sim x (ex1)x ( a x − 1 ) ∼ x ln ⁡ a \left( a^x - 1 \right) \sim x \ln a (ax1)xlna ( ( 1 + x ) α − 1 ) ∼ α x \left( \left( 1+x \right) ^\alpha -1 \right) \sim \alpha x ((1+x)α1)αx

2. 导数基本公式

一般函数三角函数反三角函数双曲函数
(圆函数)
( C ) ′ = 0 \left( C \right)' = 0 (C)=0 ( sin ⁡ x ) ′ = cos ⁡ x \left( \sin x \right)' = \cos x (sinx)=cosx ( arcsin ⁡ x ) ′ = 1 1 − x 2 \left( \arcsin x \right)' = \frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 ( sinh ⁡ x ) ′ = ( e x − e − x 2 ) ′ = cosh ⁡ x \left( \sinh x \right)' = \left(\frac{e^x-e^{-x}}{2}\right)' = \cosh x (sinhx)=(2exex)=coshx
( x α ) ′ = α x α − 1 ( α ∈ Z ) \left( x^\alpha \right)'=\alpha x^{\alpha-1} \left( \alpha \in \mathbf{Z} \right) (xα)=αxα1(αZ) ( cos ⁡ x ) ′ = − sin ⁡ x \left( \cos x \right)' = -\sin x (cosx)=sinx ( arccos ⁡ x ) ′ = − 1 1 − x 2 \left( \arccos x \right)' = -\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1 ( cosh ⁡ x ) ′ = ( e x + e − x 2 ) ′ = sinh ⁡ x \left( \cosh x \right)' = \left( \frac{e^x+e^{-x}}{2} \right)'=\sinh x (coshx)=(2ex+ex)=sinhx
( log ⁡ a x ) ′ = 1 x ln ⁡ a \left( \log_ax\right)'=\frac{1}{x\ln a} (logax)=xlna1 ( tan ⁡ x ) ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x \left( \tan x \right)' = \frac{1}{\cos^2 x}=\sec^2 x (tanx)=cos2x1=sec2x ( arctan ⁡ x ) ′ = 1 1 + x 2 \left( \arctan x \right)' = \frac{1}{1+x^2} (arctanx)=1+x21 ( a r s i n h   x ) ′ = ( ln ⁡ ( x + x 2 + 1 ) ) ′ = 1 x 2 + 1 \left( \mathrm{arsinh} \, x \right)' = \left(\ln \left( x+\sqrt{x^2 + 1} \right) \right)' = \frac{1}{x^2+1} (arsinhx)=(ln(x+x2+1 ))=x2+11
( ln ⁡ ( \ln (ln| x x x | ) ′ = 1 x )'=\frac{1}{x} )=x1 ( cot ⁡ x ) ′ = − 1 sin ⁡ 2 x = − csc ⁡ 2 x \left( \cot x \right)' = -\frac{1}{\sin^2 x} = -\csc^2 x (cotx)=sin2x1=csc2x ( a r c c o t   x ) ′ = − 1 1 + x 2 \left( \mathrm{arccot} \, x \right)' = -\frac{1}{1+x^2} (arccotx)=1+x21 ( a r c o s h   x ) ′ = ( ln ⁡ ( x + x 2 − 1 ) ) ′ = 1 x 2 − 1 \left( \mathrm{arcosh} \, x \right)' = \left( \ln \left( x + \sqrt{x^2 - 1} \right) \right)' = \frac{1}{\sqrt{x^2-1}} (arcoshx)=(ln(x+x21 ))=x21 1
( sec ⁡ x ) ′ = sec ⁡ x ⋅ tan ⁡ x \left( \sec x \right)' = \sec x \cdot \tan x (secx)=secxtanx
( csc ⁡ x ) ′ = csc ⁡ x ⋅ cot ⁡ x \left( \csc x \right)' = \csc x \cdot \cot x (cscx)=cscxcotx
  • Newton-Leibniz 公式:
    ( u ⋅ v ) ( n ) = u ( n ) v + n u ( n − 1 ) v ′ + n ( n − 1 ) 2 ! u ( n − 2 ) v ′ ′ + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! u ( n − k ) v ( k ) + ⋯ + u v ( n ) = ∑ k = 0 n C n k u ( u − k ) v k \begin{aligned} \left( u \cdot v \right)^{\left( n \right)} &= u^{\left( n \right)}v + nu^{\left( n-1 \right)}v' + \frac{n \left( n-1 \right)}{2!}u^{\left( n-2 \right)}v'' + \cdots + \frac{n\left( n-1 \right)\cdots\left(n-k+1\right)}{k!}u^{\left( n-k \right)}v^{(k)} + \cdots + uv^{\left( n \right)} \\ &= \sum_{k=0}^{n}C_n^k u^{\left( u-k \right)}v^k \end{aligned} (uv)(n)=u(n)v+nu(n1)v+2!n(n1)u(n2)v++k!n(n1)(nk+1)u(nk)v(k)++uv(n)=k=0nCnku(uk)vk可以注意到 Newton-Leibniz 公式具有类似二项式定理展开的形式。

3. 几个初等函数的 Maclaurin 公式

  1. Taylor 公式的一般形式
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n f(x)=f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn其中
    R n = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1   ( ξ   在   x   和   x 0   之 间 ) = o ( ( x − x 0 ) n ) ( x → x 0 ) R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \, (\xi\,在\,x\,和\,x_0\,之间) = o\left( \left( x - x_0 \right)^n \right)(x\to x_0) Rn=(n+1)!f(n+1)(ξ)(xx0)n+1(ξxx0)=o((xx0)n)(xx0)

  2. Maclaurin 公式的一般形式
    f ( x ) = f ( 0 ) + f ′ ( 0 )   x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n f(x)=f(0)+f'(0)\,x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + R_n f(x)=f(0)+f(0)x+2!f(0)x2++n!f(n)(0)xn+Rn其中
    R n = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1   ( ξ   在   0   和   x   之 间 ) = f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 ( 0 < θ < 1 ) = o ( ( x − x 0 ) n ) ( x → x 0 ) R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1} \, (\xi\,在\,0\,和\,x\,之间) = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}(0<\theta<1) = o\left( \left( x - x_0 \right)^n \right)(x\to x_0) Rn=(n+1)!f(n+1)(ξ)xn+1(ξ0x)=(n+1)!f(n+1)(θx)xn+1(0<θ<1)=o((xx0)n)(xx0)

  3. 指数函数的 Maclaurin 展开式
    e x = 1 + x + x 2 2 + x 3 3 + ⋯ + x n n ! + e θ x ( n + 1 ) ! ( 0 < θ < 1 ) e^x=1+x+\frac{x^2}{2} + \frac{x^3}{3} + \cdots +\frac{x^n}{n!} + \frac{e^{\theta x}}{(n+1)!}(0<\theta<1) ex=1+x+2x2+3x3++n!xn+(n+1)!eθx(0<θ<1)

  4. 正弦函数的 Maclaurin 展开式
    sin ⁡ x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) m − 1 x 2 m − 1 ( 2 m − 1 ) ! + R 2 m \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + (-1)^{m-1}\frac{x^{2m-1}}{(2m-1)!} + R_{2m} sinx=x3!x3+5!x5++(1)m1(2m1)!x2m1+R2m其中
    R 2 m = sin ⁡ ( θ x + ( 2 m − 1 ) π 2 ) ( 2 m + 1 ) ! x 2 m + 1 = o ( x 2 m ) ( 0 < θ < 1 ) R_{2m}=\frac{\sin\left( \theta x + \frac{(2m-1)\pi}{2}\right)}{(2m+1)!}x^{2m+1} = o(x^{2m})(0<\theta <1) R2m=(2m+1)!sin(θx+2(2m1)π)x2m+1=o(x2m)(0<θ<1)

  5. 余弦函数的 Maclaurin 展开式
    cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) m x 2 m 2 m ! + R 2 m + 1 \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + (-1)^m\frac{x^{2m}}{2m!} + R_{2m+1} cosx=12!x2+4!x4++(1)m2m!x2m+R2m+1其中 R 2 m + 1 = cos ⁡ ( θ x + ( m + 1 ) π ) ( 2 m + 2 ) ! x 2 m + 2 = o ( x 2 m + 2 ) ( 0 < θ < 1 ) R_{2m+1}=\frac{\cos(\theta x + (m+1)\pi)}{(2m+2)!} x^{2m+2}=o(x^{2m+2}) (0<\theta <1) R2m+1=(2m+2)!cos(θx+(m+1)π)x2m+2=o(x2m+2)(0<θ<1)

  6. ln ⁡ ( 1 + x ) \ln (1+x) ln(1+x)Maclaurin 展开式
    ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 x n n + R n ( x ) \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} -\frac{x^4}{4} + \cdots + \frac{(-1)^{n-1}x^n}{n} + R_n(x) ln(1+x)=x2x2+3x34x4++n(1)n1xn+Rn(x)其中
    R n ( x ) = ( − 1 ) n ( n + 1 ) ( 1 + θ x ) n + 1 x n + 1 = o ( x n ) ( 0 < θ < 1 ) R_n(x) = \frac{(-1)^n}{(n+1)(1+\theta x)^{n+1}}x^{n+1} = o(x^n)(0<\theta <1) Rn(x)=(n+1)(1+θx)n+1(1)nxn+1=o(xn)(0<θ<1)

  7. ( 1 + x ) α (1+x)^\alpha (1+x)αMaclaurin 展开式
    ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + R n ( x ) (1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots + \frac{\alpha(\alpha - 1)\cdots (\alpha-n+1)}{n!}x^n + R_n(x) (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+Rn(x)其中
    R n ( x ) = α ( α − 1 ) ⋯ ( α − n ) ( n + 1 ) ! ( 1 + θ x ) α − n − 1 x n + 1 = o ( x ) ( 0 < θ < 1 ) R_n(x) = \frac{\alpha(\alpha -1)\cdots(\alpha-n)}{(n+1)!}(1+\theta x)^{\alpha-n-1}x^{n+1} = o(x)(0<\theta <1) Rn(x)=(n+1)!α(α1)(αn)(1+θx)αn1xn+1=o(x)(0<θ<1)

  8. 1 1 − x \frac{1}{1-x} 1x1Maclaurin 展开式
    1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) \frac{1}{1-x} = 1+x+x^2+\cdots+x^n +o(x^n) 1x1=1+x+x2++xn+o(xn)


4. 曲率及曲率半径

曲率曲率半径
K = ∥ d α d s ∥ = tan ⁡ α = y ′ ⇒ α = arctan ⁡ y ′ ∥ y ′ ′ 1 + y ′ 2 d x ∥ 1 + y ′ 2 d x = ∥ y ′ ′ ∥ ( 1 + y ′ ) 3 2 K=\left\| \dfrac{\mathrm{d}\alpha}{\mathrm{d}s}\right\| \xlongequal{\tan \alpha = y' \Rightarrow \alpha = \arctan y'} \dfrac{\left\| \frac{y''}{1+y'^2}\mathrm{d}x \right\|}{\sqrt{1+y'^2}}\mathrm{d}x = \dfrac{\left\| y'' \right\|}{\left( 1 + y' \right)^\frac{3}{2}} K=dsdαtanα=yα=arctany 1+y2 1+y2ydxdx=(1+y)23y R = 1 K R = \frac{1}{K} R=K1

注:表中的 ∥ ⋅ ∥ \|\cdot\| 代表绝对值含义,此处因为和Markdown的表格分隔符“ | ”冲突而写成该形式。


5. 积分常用公式

描述公式
1定积分的定义 ∫ 0 1 f ( x ) d x = I = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i , 其 中 λ = max ⁡ { Δ x 1 , Δ x 2 , ⋯   , Δ x n } \int^1_0f(x)\mathrm{d}x=I=\lim_{\lambda \to 0}\sum_{i=1}^{n}f(\xi_i)\Delta x_i,其中\lambda = \max \left\{ \Delta x_1,\Delta x_2, \cdots, \Delta x_n \right\} 01f(x)dx=I=λ0limi=1nf(ξi)Δxiλ=max{Δx1,Δx2,,Δxn}
2变上限积分 考 察 定 积 分 ∫ a x f ( x ) d x = ∫ a x f ( t ) d t , 对 Φ ( x ) = ∫ a x f ( t ) d t , 有 Φ ′ ( x ) = d d x ∫ a x f ( t ) d t = f ( x ) 考察定积分\int^x_af(x)\mathrm{d}x=\int^x_af(t)\mathrm{d}t,对\Phi(x)=\int_a^xf(t)\mathrm{d}t,有\Phi'(x)=\frac{\mathrm{d}}{\mathrm{d}x}\int_a^xf(t)\mathrm{d}t = f(x) axf(x)dx=axf(t)dtΦ(x)=axf(t)dtΦ(x)=dxdaxf(t)dt=f(x)
3. d d x ∫ α ( x ) β ( x ) f ′ ( t ) d t = f [ β ( x ) ] β ′ ( x ) − f [ α ( x ) ] α ′ ( x ) \frac{\mathrm{d}}{\mathrm{d}x}\int^{\beta(x)}_{\alpha(x)}f'(t)\mathrm{d}t = f\left[ \beta\left(x\right)\right]\beta'(x)-f[\alpha(x)]\alpha'(x) dxdα(x)β(x)f(t)dt=f[β(x)]β(x)f[α(x)]α(x)
4上下限对称的积分 若 f ( x ) 为 偶 函 数 , 则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x ; 若 f ( x ) 为 奇 函 数 , 则 ∫ − a a f ( x ) d x = 0 若f(x)为偶函数,则\int_{-a}^af(x)\mathrm{d}x=2\int_0^af(x)\mathrm{d}x;若f(x)为奇函数,则\int_{-a}^af(x)\mathrm{d}x=0 f(x)aaf(x)dx=20af(x)dxf(x)aaf(x)dx=0
5周期函数的积分 f ( x + T ) = f ( x ) ⇒ ∫ 0 n T f ( x ) d x = n ∫ 0 T f ( x ) d x f(x+T)=f(x)\Rightarrow\int_0^{nT}f(x)\mathrm{d}x=n\int^T_0f(x)\mathrm{d}x f(x+T)=f(x)0nTf(x)dx=n0Tf(x)dx
6分部积分法 ∫ u v ′ d x = u v − ∫ u ′ v d x ⇔ ∫ u d v = u v − ∫ v d u \int uv'\mathrm{d}x=uv - \int u'v\mathrm{d}x \Leftrightarrow \int u\mathrm{d}v = uv - \int v\mathrm{d}u uvdx=uvuvdxudv=uvvdu

6. 基本积分表

积分式
1 ∫ k d x = k x + C , 特 别 地 ∫ d x = x + C \int k\mathrm{d}x=kx+C,特别地\int\mathrm{d}x=x+C kdx=kx+Cdx=x+C
2 ∫ x μ d x = x μ + 1 μ + 1 + C ( μ ≠ − 1 ) , 特 别 地 ∫ d x x 2 = − 1 x + C , ∫ d x x = 2 x + C \int x^\mu\mathrm{d}x=\frac{x^{\mu+1}}{\mu+1}+C(\mu\ne-1),特别地\int \frac{\mathrm{d}x}{x^2}=-\frac{1}{x}+C,\int\frac{\mathrm{d}x}{\sqrt{x}}=2\sqrt{x}+C xμdx=μ+1xμ+1+C(μ=1)x2dx=x1+C,x dx=2x +C
3 ∫ d x x = ln ⁡ ∥ x ∥ + C \int\frac{\mathrm{d}x}{x}=\ln \|x\|+C xdx=lnx+C
4 ∫ d x 1 + x 2 = arctan ⁡ x + C \int\frac{\mathrm{d}x}{1+x^2} = \arctan x +C 1+x2dx=arctanx+C
5 ∫ d x 1 − x 2 = arcsin ⁡ x + C \int\frac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin x+C 1x2 dx=arcsinx+C
6 ∫ sin ⁡ x d x = − cos ⁡ x + C , ∫ cos ⁡ x d x = sin ⁡ x + C \int\sin x\mathrm{d}x = -\cos x+C,\int\cos x\mathrm{d}x = \sin x +C sinxdx=cosx+Ccosxdx=sinx+C
7 ∫ d x cos ⁡ 2 x = ∫ sec ⁡ 2 x d x = tan ⁡ x + C , ∫ d x sin ⁡ 2 x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int\frac{\mathrm{d}x}{\cos^2x} = \int\sec^2x\mathrm{d}x = \tan x +C,\int\frac{\mathrm{d}x}{\sin^2x}=\int\csc^2x\mathrm{d}x = -\cot x +C cos2xdx=sec2xdx=tanx+Csin2xdx=csc2xdx=cotx+C
8 ∫ a x d x = a x ln ⁡ a + C , 特 别 地 ∫ e x d x = e x + C \int a^x\mathrm{d}x = \frac{a^x}{\ln a} + C,特别地\int e^x\mathrm{d}x = e^x +C axdx=lnaax+Cexdx=ex+C
9 ∫ sinh ⁡ x d x = cosh ⁡ x + C , ∫ cosh ⁡ x d x = sinh ⁡ x + C \int \sinh x\mathrm{d}x = \cosh x + C,\int \cosh x \mathrm{d}x=\sinh x +C sinhxdx=coshx+Ccoshxdx=sinhx+C

注:表中的 ∥ ⋅ ∥ \|\cdot\| 代表绝对值含义,此处因为和Markdown的表格分隔符“ | ”冲突而写成该形式。


7. 三角函数相关公式

公式
1 sin ⁡ 2 x + cos ⁡ 2 x = 1 , tan ⁡ 2 x + 1 = sec ⁡ 2 x , cot ⁡ 2 x + 1 = csc ⁡ 2 x \sin^2x+\cos^2x=1, \tan^2x+1=\sec^2x,\cot^2x+1=\csc^2x sin2x+cos2x=1,tan2x+1=sec2x,cot2x+1=csc2x
2 cosh ⁡ 2 x − sinh ⁡ 2 x = 1 , sinh ⁡ ( x ± y ) = sinh ⁡ x ⋅ cosh ⁡ y ± sinh ⁡ y ⋅ cosh ⁡ x , cosh ⁡ ( x ± y ) = cosh ⁡ x ⋅ cosh ⁡ y , sinh ⁡ 2 x = 2 sinh ⁡ x ⋅ cosh ⁡ x , cosh ⁡ 2 x = cosh ⁡ 2 x + sinh ⁡ 2 x = 2 cosh ⁡ 2 x − 1 \begin{aligned}&\cosh^2x-\sinh^2x=1,\\ &\sinh(x\pm y)=\sinh x\cdot\cosh y \pm \sinh y\cdot\cosh x, \cosh(x\pm y) = \cosh x\cdot\cosh y,\\ &\sinh2x = 2\sinh x\cdot \cosh x, \cosh 2x = \cosh^2x+\sinh^2x = 2\cosh^2x - 1\end{aligned} cosh2xsinh2x=1,sinh(x±y)=sinhxcoshy±sinhycoshx,cosh(x±y)=coshxcoshy,sinh2x=2sinhxcoshx,cosh2x=cosh2x+sinh2x=2cosh2x1
3
积化和差公式
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] , cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] , cos ⁡ α cos ⁡ β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] , sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin\alpha\cos\beta=\frac12[\sin(\alpha+\beta)+\sin(\alpha-\beta)],\cos\alpha\sin\beta = \frac12[\sin(\alpha+\beta) - \sin(\alpha-\beta)],\\ \cos\alpha\cos\beta = \frac12[cos(\alpha+\beta) + cos(\alpha - \beta)], \sin\alpha\sin\beta=-\frac12[\cos(\alpha+\beta) - \cos(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)],cosαsinβ=21[sin(α+β)sin(αβ)],cosαcosβ=21[cos(α+β)+cos(αβ)],sinαsinβ=21[cos(α+β)cos(αβ)]
4
和差化积公式
sin ⁡ α + sin ⁡ β = 2 sin ⁡ ( α + β 2 ) cos ⁡ ( α − β 2 ) , sin ⁡ α − sin ⁡ β = 2 sin ⁡ ( α − β 2 ) cos ⁡ ( α + β 2 ) , cos ⁡ α + cos ⁡ β = 2 cos ⁡ ( α + β 2 ) cos ⁡ ( α − β 2 ) , cos ⁡ α − cos ⁡ β = − 2 sin ⁡ ( α + β 2 ) sin ⁡ ( α − β 2 ) \sin\alpha + \sin\beta = 2\sin\left(\frac{\alpha+\beta}{2}\right) \cos\left(\frac{\alpha-\beta}{2}\right), \sin\alpha - \sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right) \cos\left(\frac{\alpha+\beta}{2}\right), \\ \cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right) \cos\left(\frac{\alpha-\beta}{2}\right), \cos\alpha - \cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right) \sin\left(\frac{\alpha-\beta}{2}\right) sinα+sinβ=2sin(2α+β)cos(2αβ),sinαsinβ=2sin(2αβ)cos(2α+β),cosα+cosβ=2cos(2α+β)cos(2αβ),cosαcosβ=2sin(2α+β)sin(2αβ)
5
三角代换
a 2 − x 2 → x = a sin ⁡ t a cos ⁡ t , a 2 + x 2 → x = a tan ⁡ t a sec ⁡ t , x 2 − a 2 → x = a sec ⁡ t a tan ⁡ t ( a > 0 , t ∈ ( − π 2 , π 2 ) ) \sqrt{a^2-x^2}\xrightarrow{x=a\sin t}a\cos t, \sqrt{a^2+x^2} \xrightarrow{x=a\tan t}a\sec t, \sqrt{x^2-a^2}\xrightarrow{x=a\sec t}a\tan t \left( a>0,t\in\left( -\frac{\pi}{2} , \frac{\pi}{2} \right) \right) a2x2 x=asint acost,a2+x2 x=atant asect,x2a2 x=asect atant(a>0,t(2π,2π))
6 ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + 1 2 x a 2 − x 2 + C ( a > 0 ) \int\sqrt{a^2-x^2}\mathrm{d}x = \frac{a^2}{2}\arcsin\frac xa + \frac12x\sqrt{a^2-x^2} + C(a>0) a2x2 dx=2a2arcsinax+21xa2x2 +C(a>0)
7 ∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln ⁡ ∥ x + x 2 + a 2 ∥ + C ( a > 0 ) \int\sqrt{x^2+a^2}\mathrm{d}x = \frac x2\sqrt{x^2+a^2} + \frac{a^2}2\ln \left\| x+\sqrt{x^2+a^2} \right\|+C(a>0) x2+a2 dx=2xx2+a2 +2a2lnx+x2+a2 +C(a>0)
8 ∫ 1 x 2 + a 2 d x = ln ⁡ ∥ x + x 2 + a 2 ∥ + C , ∫ 1 x 2 − a 2 d x = ln ⁡ ∥ x + x 2 + a 2 ∥ ( a > 0 ) 特 别 地 , ∫ 1 x 2 + 1 d x = ( x + x 2 + 1 ) = a r s i n h   x , ∫ 1 x 2 − 1 d x = ln ⁡ ( x + x 2 − 1 ) = a r c o s h   x \int\frac{1}{\sqrt{x^2+a^2}}\mathrm{d}x = \ln\left\| x+ \sqrt{x^2+a^2} \right\| +C, \int\frac{1}{\sqrt{x^2-a^2}}\mathrm{d}x = \ln\left\| x + \sqrt{x^2+a^2}\right\|(a>0)\\ 特别地,\int\frac{1}{\sqrt{x^2+1}}\mathrm{d}x=\left(x+\sqrt{x^2+1}\right) = \mathrm{arsinh}\, x,\int\frac{1}{\sqrt{x^2-1}}\mathrm{d}x = \ln\left( x+\sqrt{x^2-1}\right) = \mathrm{arcosh}\, x x2+a2 1dx=lnx+x2+a2 +C,x2a2 1dx=lnx+x2+a2 (a>0)x2+1 1dx=(x+x2+1 )=arsinhx,x21 1dx=ln(x+x21 )=arcoshx
9 ∫ sec ⁡ x d x = ∫ 1 cos ⁡ x d x = ∫ sec ⁡ 2 x + sec ⁡ x tan ⁡ x sec ⁡ x + tan ⁡ x d x = ∫ 1 sec ⁡ x + tan ⁡ x d ( sec ⁡ x + tan ⁡ x ) = ln ⁡ ∥ sec ⁡ x + tan ⁡ x ∥ + C \int\sec x\mathrm{d}x = \int\frac{1}{\cos x}\mathrm{d}x = \int\frac{\sec^2x+\sec x \tan x}{\sec x + \tan x}\mathrm{d}x = \int\frac{1}{\sec x + \tan x}\mathrm{d}(\sec x + \tan x) = \ln \left\| \sec x + \tan x \right\| + C secxdx=cosx1dx=secx+tanxsec2x+secxtanxdx=secx+tanx1d(secx+tanx)=lnsecx+tanx+C
10 ∫ csc ⁡ x d x = ∫ 1 sin ⁡ x d x = ln ⁡ ∥ tan ⁡ x 2 ∥ + C = 1 2 ln ⁡ ∥ 1 − cos ⁡ x 1 + cos ⁡ x ∥ + C \int\csc x\mathrm{d}x = \int\frac{1}{\sin x}\mathrm{d}x = \ln\left\| \tan\frac x2 \right\| + C = \frac 12 \ln \left\| \frac{1-\cos x}{1 + \cos x}\right\| + C cscxdx=sinx1dx=lntan2x+C=21ln1+cosx1cosx+C
11 ∫ tan ⁡ x d x = ∫ sin ⁡ x cos ⁡ x d x = − ∫ 1 cos ⁡ x d ( cos ⁡ x ) = − ln ⁡ ∥ cos ⁡ x ∥ + C \int\tan x\mathrm{d}x = \int\frac{\sin x}{\cos x}\mathrm{d}x = -\int\frac{1}{\cos x}\mathrm{d}(\cos x) = -\ln \left\| \cos x\right\| +C tanxdx=cosxsinxdx=cosx1d(cosx)=lncosx+C
12 ∫ 1 tan ⁡ x d x = ∫ cos ⁡ x sin ⁡ x d x = ∫ 1 sin ⁡ x d ( sin ⁡ x ) = ln ⁡ ∥ sin ⁡ x ∥ + C \int\frac{1}{\tan x}\mathrm{d}x = \int\frac{\cos x}{\sin x}\mathrm{d}x = \int\frac{1}{\sin x}\mathrm{d}(\sin x) = \ln\left\| \sin x \right\| + C tanx1dx=sinxcosxdx=sinx1d(sinx)=lnsinx+C
13 ∫ arctan ⁡ x d x = x arctan ⁡ x − ln ⁡ ∥ 1 + x 2 ∥ + C \int\arctan x\mathrm{d}x = x\arctan x - \ln \left\| 1+x^2 \right\| +C arctanxdx=xarctanxln1+x2+C
14
Wallis 公式
∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , n 为 偶 数 n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 2 3 ⋅ 1 , n 为 奇 数 = { ( n − 1 ) ! ! n ! ! ⋅ π 2 , n 为 偶 数 ( n − 1 ) ! ! n ! ! , n 为 奇 数 \int^{\frac{\pi}{2}}_{0}\sin^nx\mathrm{d}x = \int^{\frac{\pi}{2}}_{0}\cos^nx\mathrm{d}x = \begin{cases} \frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot\cdots\cdot\frac12\cdot\frac\pi2,&n为偶数 \\ \frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot\cdots\cdot\frac23\cdot1,&n为奇数 \end{cases} = \begin{cases} \frac{(n-1)!!}{n!!}\cdot\frac\pi2,&n为偶数 \\ \frac{(n-1)!!}{n!!},&n为奇数 \end{cases} 02πsinnxdx=02πcosnxdx={nn1n2n3212π,nn1n2n3321,nn={n!!(n1)!!2π,n!!(n1)!!,nn
15 ∫ 0 π sin ⁡ n x d x = 2 ∫ 0 π 2 sin ⁡ n x d x , ∫ 0 π cos ⁡ n x d x = { 2 ∫ 0 π 2 cos ⁡ n x d x , n 为 偶 数 0 , n 为 奇 数 ∫ 0 2 π sin ⁡ n x = ∫ 0 2 π cos ⁡ n x d x = { 4 ∫ 0 π 2 sin ⁡ n x d x , n 为 偶 数 0 , n 为 奇 数 ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x , ∫ 0 π f ( sin ⁡ x ) d x ≠ ∫ 0 π f ( cos ⁡ x ) d x ∫ 0 π π f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \int_0^\pi\sin^nx\mathrm{d}x = 2\int^\frac\pi2_0\sin^nx\mathrm{d}x,\int_0^\pi\cos^nx\mathrm{d}x = \begin{cases} 2\int^\frac\pi2_0\cos^nx\mathrm{d}x,&n为偶数 \\ 0,&n为奇数 \end{cases} \\ \int_0^{2\pi}\sin^nx = \int_0^{2\pi}\cos^nx\mathrm{d}x = \begin{cases} 4\int^\frac\pi2_0\sin^nx\mathrm{d}x,&n为偶数 \\ 0,&n为奇数 \end{cases} \\ \int_0^\frac\pi2f(\sin x)\mathrm{d}x = \int_0^\frac\pi2f(\cos x)\mathrm{d}x, \int_0^\pi f(\sin x)\mathrm{d}x \ne \int_0^\pi f(\cos x)\mathrm{d}x \\ \int_0^\pi\pi f(\sin x)\mathrm{d}x = \frac\pi2\int_0^\pi f(\sin x)\mathrm{d}x = \pi\int_0^\frac\pi2 f(\sin x)\mathrm{d}x 0πsinnxdx=202πsinnxdx,0πcosnxdx={202πcosnxdx,0,nn02πsinnx=02πcosnxdx={402πsinnxdx,0,nn02πf(sinx)dx=02πf(cosx)dx,0πf(sinx)dx=0πf(cosx)dx0ππf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx
16
万能公式
令 u = tan ⁡ x 2 , x = 2 arctan ⁡ u , 则 sin ⁡ x = 2 u 1 + u 2 , cos ⁡ x = 1 − u 2 1 + u 2 , d x = 2 1 + u 2 d u 令u=\tan\frac x2,x=2\arctan u,则\sin x = \frac{2u}{1+u^2},\cos x=\frac{1-u^2}{1+u^2}, \mathrm{d}x = \frac{2}{1+u^2}\mathrm{d}u u=tan2x,x=2arctanusinx=1+u22u,cosx=1+u21u2,dx=1+u22du
17 ∫ a cos ⁡ x + b sin ⁡ x c cos ⁡ x + d sin ⁡ x = A ∫ d x + B ∫ d ( c cos ⁡ x + d sin ⁡ x ) c cos ⁡ x + d sin ⁡ x ( 设 a cos ⁡ x + b sin ⁡ x = A ( c cos ⁡ x + d sin ⁡ x ) + B ( c cos ⁡ x + d sin ⁡ x ) ′ , 由 待 定 系 数 法 求 出 A 、 B ) \int \frac{a\cos x+ b\sin x}{c\cos x + d \sin x} = A\int\mathrm{d}x+B\int\frac{\mathrm{d}(c\cos x+d \sin x)}{c \cos x + d \sin x} \\ (设a\cos x + b\sin x = A(c \cos x + d \sin x) + B(c \cos x + d \sin x)',由待定系数法求出A、B) ccosx+dsinxacosx+bsinx=Adx+Bccosx+dsinxd(ccosx+dsinx)(acosx+bsinx=A(ccosx+dsinx)+B(ccosx+dsinx),AB)

注:表中的 ∥ ⋅ ∥ \|\cdot\| 代表绝对值含义,此处因为和Markdown的表格分隔符“ | ”冲突而写成该形式。


  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值