保研复习——线性代数1:矩阵及其应用

博主不定期更新【保研/推免、C/C++、5G移动通信、Linux、生活随笔】系列文章,喜欢的朋友【点赞+关注】支持一下吧!


矩阵及其应用

1.矩阵乘法

\[ C_{m\times n} = A_{m\times s}  \times  B_{s\times n} \]

\[ c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+ \cdots +a_{is}b_{sj}= \sum_{k=1}^{s}a_{ik}b_{kj} \]

即:乘积矩阵第i行第j列的元等于左边矩阵第i行的各元与右边矩阵第j列的对应元乘积之和。

  •  一般情况下AB≠BA:BA可能无意义;即使有意义,其结果不一定有相同的行数与列数;即使有相同的行数与列数,AB与BA也不一定相等;同理一般 \((AB)^{k}\neq A^{k}B^{k} \),规定\(A^{0}=E\).
  • 若AB=BA,则称A与B乘法可交换。n阶单位矩阵E与任何n阶矩阵乘法可交换。
  • 两个非零矩阵之积可能是零矩阵,即由AB=O不能得到A=O或B=O;同理A≠O,AB=AC不能推出B=C (但A可逆时则可以推出B=C)

2.转置矩阵

\[(\lambda A)^{T}=\lambda A^{T}\]

\[(A+B)^{T}= A^{T}+B^{T}\]

\[(AB)^{T}= B^{T}A^{T}\]

  • 对称矩阵\(A^{T}=A\);反对称矩阵\(A^{T}=-A\)(特点:主对角线上元素都是0)
  • 任意n阶方阵都可以写成对称矩阵与反对称矩阵之和。

\[A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}\]

3.共轭矩阵

当\(A=(a_{ij})\)为复矩阵时,用\(\bar{a_{ij}}\)表示\(a_{ij}\)的共轭复数,则\(\bar{A}=(\bar{a_{ij}})\)称为A的共轭矩阵,共轭矩阵满足:

\[\overline{A+B}=\overline{A}+\overline{B}\]
\[\overline{\lambda A}=\overline{\lambda} \, \overline{A}\]
\[\overline{AB}=\overline{A} \, \overline{B}\]

4.可逆矩阵

设A为n阶方阵,若存在n阶方阵B,使得

\[AB=BA=E\]

则称A为可逆矩阵,并称B为A的逆矩阵,记为\(B=A^{-1}\).

若A可逆,则A的逆矩阵唯一;单位矩阵的逆矩阵就是其本身。

  • 对于二阶矩阵,若\(ad-bc\neq 0\),则

\[\begin{bmatrix}
a &b \\ 
 c&d 
\end{bmatrix}^{-1}=\frac{1}{ad-bc}\begin{bmatrix}
d &-b \\ 
 -c&a 
\end{bmatrix}\]

  • \((A^{-1})^{-1}=A\);\((kA)^{-1}=k^{-1} A^{-1}\);\((A^{T})^{-1}=(A^{-1})^{T}\)
  • 若A与B都是n阶可逆矩阵,则AB也是n阶可逆矩阵,且\((AB)^{-1}=B^{-1} A^{-1}\);同理有\(A^{-m}=(A^{-1})^m\),其中m是非负整数。
  • 对角矩阵

5.逆矩阵的求法

  • 定义法(AB=E)
  • 初等变换法
  • 伴随矩阵法
  • 分块矩阵求逆法
  • 利用线性方程组求逆矩阵

以上各种解法的详细描述及具体例题可参考逆矩阵的几种求法与解析(分享自百度文库)

6.分块矩阵

  • 分块矩阵的转置,需将子块构成的行顺次改成列,然后,还需将每个子块取转置。
  • 分块矩阵的乘法Ams×Bsn :使A的列的分法与B的行的分法一致。(例如,A在第三行第二列划线,则B在第三列第二行划线)
  • 矩阵AB的第j列是矩阵A与B的第j列的乘积 \[C=AB=A(\beta _{1},\beta _{2},\cdots,\beta_{n})=(A\beta _{1},A\beta _{2},\cdots,A\beta_{n})\]
  • 矩阵AB的第i行是矩阵A的第i行与矩阵B的乘积 \[C=AB=\begin{bmatrix} \alpha _{1}\\ \alpha _{2}\\ \cdots \\ \alpha_{4} \end{bmatrix}B=\begin{bmatrix} \alpha _{1}B\\ \alpha _{2}B\\ \cdots \\ \alpha_{4}B \end{bmatrix}\]

7.矩阵的初等变换(初等行变换、初等列变换)

  • 高斯消元法:阶梯型方程组(自上而下未知量个数依次减少)
  • 矩阵的初等行变换(3种):互换矩阵第i行和第j行的位置;用一个非零常数k乘矩阵的第i行;将矩阵的第j行所有元的k倍加到第i行的对应元上。矩阵A经初等变换化为B,称A与B等价
  • 阶梯型矩阵:

(1)若有零行,则零行位于非零行的下方;(2)每个首非零元前面零的个数逐行增加。

首非零元为1,且首非零元所在列的其它元都为0的行阶梯型矩阵称为行最简形矩阵。

  • 任意m×n矩阵A总可以经过初等行变换化成行阶梯型矩阵及行最简形矩阵,其中行最简形矩阵是唯一的
  • 任意m×n矩阵A总可以经过有限次初等变换化为等价标准型:\[N=\begin{bmatrix}
    E_{r} &O \\ 
     O & O
    \end{bmatrix}\] 此标准型由m,n,r完全决定,r是行阶梯型矩阵中非零行的行数。

8.初等矩阵

对单位矩阵E施行一次初等变换所得到的矩阵叫做初等矩阵(均可逆,逆矩阵仍是初等矩阵,可口算)。

定理:对A施行初等变换,其结果等于在A边乘以相应的初等矩阵;

对A施行初等变换,其结果等于在A边乘以相应的初等矩阵;(可通过分块矩阵证明)

定理:n阶方阵可逆的充要条件是它能表示成一些初等矩阵的乘积。

9.应用举例

  • 信息加密问题:密钥矩阵
  • 人口流动问题:变化矩阵A(表征人口迁移规律),Y=AX
  • 图的邻接矩阵

注:我校使用教材为刘三阳老师主编的《线性代数》第三版。

 

  • 15
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
关于高数保研复习资料,我引用中提到的高等数学复习资料,但是请注意该资料是用于保研考试准备的,不适合用于课程考试复习。这些资料未经允许不可以转载或用作商业用途。另外,根据[2]提到的保研考试科目,高数是其中的一部分,包括数学分析、高等代数与解析几何、常微分方程、实变函数、数值分析等内容。所以在准备保研考试时,可以参考这些科目的复习资料。而最后也提到了准备保研考试需要注意英语六级的过关和平时成绩的重要性。另外,好好学习是必要的,同时把握机会并尽力尝试也是很重要的。希望以上信息对你有所帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [保研高数复习.pdf](https://download.csdn.net/download/qq_38633884/11832855)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【毕业生经验贴】保研|2013级数学与应用数学——王璐](https://blog.csdn.net/weixin_39690958/article/details/119310749)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半 月半

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值