当且仅当 AB=BA 时,可对角化矩阵 A 与 B 具有相同的特征向量
也就是说,
A
B
=
B
A
AB=BA
AB=BA 是 两个可对角化矩阵 A 与 B 具有相同特征向量的充分且必要条件。
先证 必要性:
假设可对角化矩阵 A 与 B 具有相同的特征向量,那么 A 与 B 拥有相同的对角化矩阵 S (由特征向量构成)使得满足:
A
=
S
Λ
1
S
−
1
A = S\Lambda_1S^{-1}
A=SΛ1S−1 以及
B
=
S
Λ
2
S
−
1
B=S\Lambda_2S^{-1}
B=SΛ2S−1。其中的
Λ
\Lambda
Λ 代表由特征值构成的对角阵。那么有:
A
B
=
S
Λ
1
S
−
1
S
Λ
2
S
−
1
=
S
Λ
1
Λ
2
S
−
1
B
A
=
S
Λ
2
S
−
1
S
Λ
1
S
−
1
=
S
Λ
2
Λ
1
S
−
1
\begin{aligned} AB &= S\Lambda_1S^{-1}S\Lambda_2S^{-1} = S\Lambda_1\Lambda_2S^{-1} \\ BA &= S\Lambda_2S^{-1}S\Lambda_1S^{-1} = S\Lambda_2\Lambda_1S^{-1} \end{aligned}
ABBA=SΛ1S−1SΛ2S−1=SΛ1Λ2S−1=SΛ2S−1SΛ1S−1=SΛ2Λ1S−1
由于
Λ
1
Λ
2
=
Λ
2
Λ
1
\Lambda_1\Lambda_2=\Lambda_2\Lambda_1
Λ1Λ2=Λ2Λ1 (对角阵作乘法时总是可以交换的),则有
A
B
=
B
A
AB=BA
AB=BA,必要性得证。
再证 充分性:
假设
A
B
=
B
A
AB=BA
AB=BA,
A
A
A 拥有一个特征值
λ
\lambda
λ 和特征向量
x
x
x,即
A
x
=
λ
x
Ax=\lambda x
Ax=λx,那么:
A
B
x
=
B
A
x
=
B
λ
x
=
λ
B
x
ABx = BAx = B\lambda x = \lambda Bx
ABx=BAx=Bλx=λBx
因此
x
x
x 和
B
x
Bx
Bx 均是矩阵 A 对于特征值
λ
\lambda
λ 的特征向量(除非
B
x
Bx
Bx=0)。为了证明的简便性,我们假设矩阵 A 的特征值都是互不相同的,这时 A 的特征向量空间都是一维的(一条直线),那么
B
x
Bx
Bx 必定是
x
x
x 与某个常数的乘积的结果(
B
x
=
p
x
Bx = px
Bx=px)。也就是说,
x
x
x 不仅是 A(对于特征值
λ
\lambda
λ) 的特征向量,也是 B (对于特征值
p
p
p)的特征向量,充分性得证。
对于拥有多重特征值的矩阵 A,要证明充分性则相对麻烦点,这里就暂时不讨论了。
参考源
- 《Linear Algebra and Its Applicaition》