图片水印隐藏切入\肉眼看不到水印\以及提取水印的代码

该示例程序展示了如何使用Python的numpy和PIL库在图片中隐藏一个不可见的水印,并提供了解码提取水印的代码。水印通过将灰度水印图像的信息嵌入到原始图片的RGB通道中实现隐藏,提取时则通过减法操作恢复水印。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python 图片水印隐藏切入,肉眼看不到的水印,完整代码,以及提取水印的代码?

以下是一个示例程序,用于在图片中隐藏一个不可见的水印,并且提供了提取水印的代码。

import numpy as np
from PIL import Image

# 隐藏水印
def hide_watermark(image_path, watermark_path, output_path):
    # 打开原始图片和水印图片
    image = Image.open(image_path)
    watermark = Image.open(watermark_path)

    # 调整水印尺寸
    width, height = image.size
    watermark = watermark.resize((width, height), Image.ANTIALIAS)

    # 将水印转换为灰度图像
    watermark_gray = watermark.convert("L")

    # 将原始图片转换为数组,并转换为浮点型
    image_array = np.array(image).astype('float')
    # 将灰度图像转换为数组,并转换为浮点型
    watermark_array = np.array(watermark_gray).astype('float')

    # 将原始图片中的RGB通道替换为灰度水印图像
    image_array[..., 0] += (watermark_array * 0.5)
    image_array[..., 1] += (watermark_array * 0.5)
    image_array[..., 2] += (watermark_array * 0.5)

    # 将数组值限制在有效范围内
    image_array = np.clip(image_array, 0, 255)

    # 将数组转换回图像
    encoded_image = Image.fromarray(np.uint8(image_array))
    
    # 保存隐藏水印后的图片
    encoded_image.save(output_path)

    print("成功隐藏水印!")

# 提取水印
def extract_watermark(image_path,  output_path):
    # 打开被隐藏水印的图片
    encoded_image = Image.open(image_path)

    # 将图像转换为数组,并转换为浮点型
    encoded_image_array = np.array(encoded_image).astype('float')

    # 提取隐藏的水印(减去原始图片)
    watermark_array = encoded_image_array[..., 0] - encoded_image_array[..., 1]

    # 将数组值限制在有效范围内
    watermark_array = np.clip(watermark_array, 0, 255)

    # 将数组转换为图像
    watermark_image = Image.fromarray(np.uint8(watermark_array))

    # 保存提取的水印图像
    watermark_image.save(output_path)

    print("成功提取水印!")

# 主函数
if __name__ == "__main__":
    # 图片路径
    image_path = "image.jpg"
    # 水印图片路径
    watermark_path = "watermark.png"
    # 隐藏水印后的输出图片路径
    output_path = "output_image.jpg"
    # 提取水印后的输出图片路径
    extracted_output_path = "extracted_watermark.png"

    # 隐藏水印
    hide_watermark(image_path, watermark_path, output_path)
    # 提取水印
    extract_watermark(output_path, extracted_output_path)

请注意,此代码仅为示例,并且可以根据实际需求进行修改和优化。

可能报错的情况:这个错误是由于在进行数组操作时形状不匹配导致的。具体来说,错误信息中提到的operands could not be broadcast together with shapes,意味着无法将形状为(960,953,3)的pixels_dct数组和形状为(960,953)的watermark_array数组进行广播运算(broadcast),因为它们的形状并不兼容。

要解决这个问题,你可以修改代码,确保数组的形状匹配。一种简单的方法是将水印数组进行复制,使其形状与pixels_dct数组相匹配。

请尝试将以下代码:

pixels_watermarked = pixels_dct + alpha * watermark_array

watermark_array_broadcasted = np.expand_dims(watermark_array, axis=2)
pixels_watermarked = pixels_dct + alpha * watermark_array_broadcasted
通过使用np.expand_dims函数在水印数组上添加一个维度,我们可以将其广播为(960,953,1)的形状,使之与(960,953,3)的pixels_dct数组形状保持一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

研发咨询顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值