python 图片水印隐藏切入,肉眼看不到的水印,完整代码,以及提取水印的代码?
以下是一个示例程序,用于在图片中隐藏一个不可见的水印,并且提供了提取水印的代码。
import numpy as np
from PIL import Image
# 隐藏水印
def hide_watermark(image_path, watermark_path, output_path):
# 打开原始图片和水印图片
image = Image.open(image_path)
watermark = Image.open(watermark_path)
# 调整水印尺寸
width, height = image.size
watermark = watermark.resize((width, height), Image.ANTIALIAS)
# 将水印转换为灰度图像
watermark_gray = watermark.convert("L")
# 将原始图片转换为数组,并转换为浮点型
image_array = np.array(image).astype('float')
# 将灰度图像转换为数组,并转换为浮点型
watermark_array = np.array(watermark_gray).astype('float')
# 将原始图片中的RGB通道替换为灰度水印图像
image_array[..., 0] += (watermark_array * 0.5)
image_array[..., 1] += (watermark_array * 0.5)
image_array[..., 2] += (watermark_array * 0.5)
# 将数组值限制在有效范围内
image_array = np.clip(image_array, 0, 255)
# 将数组转换回图像
encoded_image = Image.fromarray(np.uint8(image_array))
# 保存隐藏水印后的图片
encoded_image.save(output_path)
print("成功隐藏水印!")
# 提取水印
def extract_watermark(image_path, output_path):
# 打开被隐藏水印的图片
encoded_image = Image.open(image_path)
# 将图像转换为数组,并转换为浮点型
encoded_image_array = np.array(encoded_image).astype('float')
# 提取隐藏的水印(减去原始图片)
watermark_array = encoded_image_array[..., 0] - encoded_image_array[..., 1]
# 将数组值限制在有效范围内
watermark_array = np.clip(watermark_array, 0, 255)
# 将数组转换为图像
watermark_image = Image.fromarray(np.uint8(watermark_array))
# 保存提取的水印图像
watermark_image.save(output_path)
print("成功提取水印!")
# 主函数
if __name__ == "__main__":
# 图片路径
image_path = "image.jpg"
# 水印图片路径
watermark_path = "watermark.png"
# 隐藏水印后的输出图片路径
output_path = "output_image.jpg"
# 提取水印后的输出图片路径
extracted_output_path = "extracted_watermark.png"
# 隐藏水印
hide_watermark(image_path, watermark_path, output_path)
# 提取水印
extract_watermark(output_path, extracted_output_path)
请注意,此代码仅为示例,并且可以根据实际需求进行修改和优化。
可能报错的情况:这个错误是由于在进行数组操作时形状不匹配导致的。具体来说,错误信息中提到的operands could not be broadcast together with shapes
,意味着无法将形状为(960,953,3)
的pixels_dct数组和形状为(960,953)
的watermark_array数组进行广播运算(broadcast),因为它们的形状并不兼容。
要解决这个问题,你可以修改代码,确保数组的形状匹配。一种简单的方法是将水印数组进行复制,使其形状与pixels_dct数组相匹配。
请尝试将以下代码:
pixels_watermarked = pixels_dct + alpha * watermark_array
watermark_array_broadcasted = np.expand_dims(watermark_array, axis=2)
pixels_watermarked = pixels_dct + alpha * watermark_array_broadcasted
通过使用np.expand_dims
函数在水印数组上添加一个维度,我们可以将其广播为(960,953,1)
的形状,使之与(960,953,3)
的pixels_dct数组形状保持一致。