网络图论模型及算法(1——定义,连通性)

图的定义

  • 无向图(undirected graph):边是没有方向的;一个无向图G是一个有序二元组<V,E>,记作G=<V,E>,其中V是一个非空集合,V中的元素称为节点或顶点;E是无序积V&V的多重子集(元素可重复出现),称E为G的边集,E中的元素称为无向边或简称边(代表元素间的一种状态)例如社交网络中一个点代表一个人,无方向的边连接两个点。
  • 有向图(directedd graph):边是有方向的;一个有向图G是一个有序二元组<V,E>,记作G=<V,E>,齐总V是一个非空的节点集;E是笛卡尔积V×V的多重子集,其元素为有向边,简称边或弧。例如一连串有因果关系的事件集。
    在这里插入图片描述
  • 无权图(unweighted graph):基于布尔值的图,例如社交网络,只有’认识’和’不认识’两种状态。
  • 有权图(weighted graph)每条:链接顶点和顶点的边都有一个固定的值对应。例如顶点代表地点的图中,每条边代表两地之间距离。

图的性质

在这里插入图片描述

  • 设G=<V,E>为无向图,ek=<vi,vj>∈E,则称 vi,vj为ek的端点,ek与vi或ek与vj是彼此关联的。
  • 无边关联的结点称为孤立点。若一条边所 关联的两个顶点重合,则称此边为环。
  • 孤立结点: 不与任何结点相连接的结点.
  • 环: 两端点相同的边称为环或自回路.
  • vi≠vj ,则称ek与vi或ek与vj的关联次数为1, 若vi=vj,则称ek与vi的关联次数为2;若vi不是 ek的端点,则称ek与vi的关联次数0。
  • 自环边:一个顶点到自身的边(e1)
  • V、E分别表示G的顶点集、边集,|V|、 |E|分别表示G的顶点数、边数。若|V|=n, 则称G为n阶图。 若|V|=1,则称 G 为平凡图。(只有一个孤立节点的图)

节点的度

  • 设G=<V,E>为一无向图, vi∈V ,称与vi关联 的边的条数(一条环要计算两次)为vi的度数(degree), 简称为度,记作deg(vi) (或d(vi) )。
  • 设D=<V,E>为一有向图, vj∈V ,称以vj作为 边的始点的边数, 为vj的出度,记作d+(vj);称以vj 作为边的终点的边数, 为vj的入度,记作d-(vj);称 d+(vj)+ d-(vj)为vj的度数,记作d(vj)。
  • 称度数为1的顶点为悬挂顶点,它所对应的边 为悬挂边。
  • 在无向图G中,令
    △(G)=max{d(v)|v∈V(G)};
    6(G) = min{d(v)| v∈V(G) }
    称 △(G)和 6(G)分别为G的最大度和最小度。
  • 在有向图D中,可类似定义△(D)、6(G)。另外,令
    △+(G) = max{d+(v)| v∈V(D) }
    6 +(G) = min{d+(v)| v∈V(D) }
    △-(G) = max{d-(v)| v∈V(D) }
    6 -(G) = min{d-(v)| v∈V(D) }
    分别为D的最大出度、最小出度、最大入度、最 小入度。简记作△、6、 △+、6+ 、 △-、6-。

握手定理

设F=<V,E>,V={v1,v2,…,vn},|E|=m(m为边数)。则


\sum_{v\in_V}deg(v) = 2m

即每条顶点度数之和等于边数2倍。

  • 证明:G中每个边(包括环)均提供两个端点,故在计算各顶点度数之和时,每条边均提供2度,m条边共提供2m度。
  • 在有向图中,所有结点入度的和等于所有结点 出度的和。

路的连通性

设G为无向图,G中顶点与边的交替序列 Γ= v0 e1 v1 e2 …el vl 称为v0到vl的通路, 其中vr-1,vr 为er的端点,r =1, 2 ,…, l。 v0 , vl分别称为Γ的起点与终点,也称 v 0 与 v l
是可达的。
Γ中边的条数 l 称为它的长度。 若v0=vl,则称通路为回路。 若Γ的所有边各异,则称Γ为简单通路,
则称Γ为简单回路。若 Γ的所有边各异且v0=vl,

  • 定理: 在n阶图G中,若从顶点v0到vl (v0≠vl )存在通路, 则v0到vl 存在长度小于或等于(n-1)的通路。
  • 推论:在n阶图G中,若从顶点vi到vj (vi ≠vj )存在通路, 则vi到vj存在长度小于或等于(n-1)的初级通路(路径)。
  • 定理:在n阶图G中,若存在从vi到自身的回路, 则一定存在vi到自身长度小于或等于n的回路。
  • 推论:在n阶图G中,若存在从vi到自身的简单回路, 则 一定存在vi 到自身长度小于或等于n的初级回路。

极大路径法

设G=<V,E>为n阶无向图,E不是空集,设Γ1为G中的一条路径,若此路径的始点U或终点v与通路外的顶点相邻,就将它们扩到道路中来,继续这一过程,直到最后得到的通路的 两个端点 不与通路外的顶点相邻为止, 设最后得到的路径为Γl+k (长度为l的路径扩大成了长度为l+k的路径), 称Γl+k为“极大路径”, 称使用此种方法证明问题的方法为“扩大路径法”(或最长路径法)
Γl+k为“极大路径” (或最长路径法) 则与Γl+k的最后面的两个端点相邻外的点肯定在Γl+k上。

图的连通性

定义:

在一个无向图G中,存在一个点集V,从图G中删掉所有属于V的点机器与之相连的边,G不连通。如果有一个边集E,删掉所有属于这个集合的边,G不连通。

  • 点连通度:最小V的点数
  • 边连通度:最小E的边数
  • 割点:点连通度为1时,V的唯一元素
  • 割边(桥):边连通度为1时,E的唯一元素
  • 点双连通:任意两点间,存在两条或以上的路径,且路径上的点互不重复。
  • 边双连通:任意两点间,存在两条或以上路径,且路径上的边互不重复。(边连通度大于1即可)
  • 双连通分量:在图G中的子图G‘,是一个双连通子图,它不是其他双连通子图的真子集,则它是一个双连通分量。
  • 一个无向图G=<V,E>, 如果它的任何两点均是可 达的,则称图G为连通图,否则称为非连通图或分离图。
  • 设vj,vi为无向图G中任意两点,若vj与vi是连通 的,则称vj与vi之间长度最短的通路为vj与vi之间 的短程线,并称为vj与vi之间的距离,记作d<vj,vi>, 当vj不可达vi时,规定d<vj,vi>=∞。
    • 距离有以下性质:
  1. d<vj,vi>≥0, 当vj=vi时,等号成立。
  2. 在无向图中还有对称性: d(vj,vi)=d(vi,vj)
  3. 满足三角不等式:d<vi,vj>+d<vj,vk>≥d<vi,vk>
    D max{d(x,y)}称为图G的直径.
  • 求割点(tarjain)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值