导读
小编在读一篇论文时遇到了变分自编码器(Variational auto-encoder,VAE)的概念,我也是第一次接触,于是乎翻遍了网上现有的好多资料,稍微理解了一点,整理下来,希望能帮助大家。如有不对地方,还请各位下方评论区批评指正,感谢您的交流指导~~
引言
- 首先附上关于变分自编码器的论文
Auto-Encoding Variational Bayes[PDF]
- 变分自编码器(Variational auto-encoder,VAE)是一类重要的生成模型(generative model),它于2013年由Diederik P.Kingma和Max Welling提出。
介绍
VAE可以通过编码解码的步骤,直接比较重建图片和原始图片的差异,但是GAN做不到。
在介绍变分自编码器之前,我们先简单了解下自编码器的一些知识:
一、自编码器
1.介绍
自编码器(autoencoder, AE)是一类在半监督学习和非监督学习中使用的人工神经网络,其功能是通过将输入信息作为学习目标,对输入信息进行表征学习。
自编码器包含编码器(encoder)和解码器(decoder)两部分。按学习范式,自编码器可以被分为收缩自编码器、正则自编码器和变分自编码器,其中前两者是判别模型、后者是生成模型 。按构筑类型,自编码器可以是前馈结构或递归结构的神经网络。
自编码器具有一般意义上表征学习算法的功能,被应用于降维和异常值检测。包含卷积层构筑的自编码器可被应用于计算机视觉问题,包括图像降噪 、神经风格迁移等。
2.算法
自编码器是一个输入和学习目标相同的神经网络,其结构分为编码器和解码器两部分。给定输入空间X∈