【视频分类论文阅读】Two-Stream Convolutional Networks for Action Recognition in Videos

这篇论文介绍了视频分类的先驱工作,采用了创新的双流网络结构,包括空间流和时间流。空间流通过静态图像捕获物体的外观信息,而时间流利用光流图像序列获取视频中的运动信息。最终,这两个流的输出被融合以实现全面的行动识别。该方法由Simonyan和Zisserman在2014年的 Advances in Neural Information Processing Systems 中提出。
摘要由CSDN通过智能技术生成

论文是视频分类的开山之作,采用了一个双流网络,是空间流和事件流共同组成的,网络的具体实现都是CNN,空间流的输入是静止的图片,来获取物体形状大小等appearance信息,时间流的输入是多个从两帧之间提取的光流图片叠加在一起,来获得视频中物体的运动信息,最后将结果进行融合。

参考文献:

  1. Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos[J]. Advances in neural information processing systems, 2014, 27.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值