迁移学习
文章平均质量分 69
S L N
这个作者很懒,什么都没留下…
展开
-
【领域泛化论文阅读】Feature Stylization and Domain-aware Contrastive Learning for Domain Generalization
新域生成的方式一般有GAN和AdaI两种。论文认为GAN和AdaIN在新域生成方面有局限性,新域数量增加,GAN难以优化,AdaIN无法保留原始图像的语义信息,IN倾向于洗去类别区分信息。为了克服以上局限性,论文提出了一种新的领域泛化框架,基于小波变换实现风格转换。论文将特征的统计信息用于将原始特征风格化为具有新域属性的特征。为了在风格化过程中保留类别信息,首先将特征分解为高频和低频分量。利用statistics采样的得到的新域风格来风格化低频分量,同时保留高频分量的shape。最后,将两个分量merge生原创 2022-06-23 17:34:39 · 486 阅读 · 0 评论 -
【领域泛化论文阅读】Embracing the Dark Knowledge: Domain Generalization Using RegularizedKnowledgeDistillation
这篇论文从任务的难度来解决领域泛化问题,论文认为如果模型的学习任务太难的话,容易发生过拟合,学习到的特征是域特有的特征而不是域不变特征,这样很难学习到泛化的特征。因此论文假设简单的任务可以提高目标域的泛化性能。论文提出了对于域泛化的知识蒸馏(KDDG),在知识蒸馏框架基础上使用梯度滤波器作为正则化项,提高模型泛化能力。 采用知识蒸馏模型,可以让学生网络学习更少的领域特定特征,达到更好泛化能力。教师网络给学生网络提供soft label,含有更多的信息量,可以让学生网络学习的任务更简单,可以学习原创 2022-06-23 17:29:10 · 404 阅读 · 0 评论 -
【领域泛化论文阅读】Learning to Diversify for Single Domain Generalization
论文提出了style-complement模块增强模型的泛化能力,将与源域分布互补的多种不同分布的图像进行合成,生成具有原始分布之外的不可见样式的样本。 通过最小化样本对的MI上界,使生成图像从源样本多样化;通过最大化来自相同语义类别的样本之间的MI,使网络能学习来自不同图像的可区分的feature,获得style-invariant feature。 样式补充模块和任务模型通过最小-最大互信息优化策略,通过迭代逐渐扩大生成图像和源图像之间的分布偏移,同时使来自同一语义类别的样本原创 2022-06-23 17:11:07 · 867 阅读 · 0 评论 -
【领域泛化论文阅读】Domain Generalization via Gradient Surgery
神经网络使用梯度下降进行训练,通过梯度引导损失的优化,在多任务学习(multi-task learning,MTL)中,每个task有不同的损失函数,会导致梯度冲突,不同的task可能会使梯度指向相反的方向,通常处理冲突梯度的方法是对他们进行平均,但是研究表明[2],简单平均会降低模型性能。与MTL处理不同的任务不同,DG处理的是不同的域,所以,论文假设在多领域的训练中会出现类似的梯度冲突。 模型的总体损失函数式(1)是每个域的损失函数的和平均加上一个正则项。 每个域的相关联的梯原创 2022-06-23 16:40:13 · 422 阅读 · 0 评论 -
【领域泛化论文阅读】Momentum Contrast for Unsupervised Visual Representation Learning
论文指出之前的工作是通过去除source domain的image style或者多样化 style,这解决了style的过拟合,但忽略了content的过拟合。这篇论文是通过wild来多样化source domain的content和style,以达到域泛化的目标。Baseline model通过segmentation loss式(1)来训练,只是普通的语义分割损失函数。Feature Stylization是为了多样化source sty.........原创 2022-05-10 00:51:15 · 661 阅读 · 0 评论 -
【领域泛化论文阅读】Semantic-Aware Domain Generalized Segmentation
关于图像白化和色彩变换的基本内容可以参考:图像标准化、图像白化、色彩变换_S L N的博客-CSDN博客论文是针对语义分割的领域泛化模型。论文提出了SAN和SAW两个模块来增强类别之间的分离,类内的聚合。SAN是针对类别级的特征对齐,SAW是对SAN对齐后的特征进行分布式对齐。 .........原创 2022-04-16 01:04:54 · 3946 阅读 · 1 评论 -
【领域泛化论文阅读】Birds of A Feather Flock Together:Category-Divergence Guidance for DomainAdaptiveSegmentat
论文提出了一个分层的无监督的领域自适应框架用于跨领域的语义分割。类间分离,类内聚合的机制(ISIA)。 针对语义分割的无监督领域自适应(UDA)的方法可以分为image-level,feature-level,label-level。Image-level自适应是改变图像的appearance,使源域和目标域的图像看起来更相似,比如改变图像的颜色纹理光照等。GAN广泛被应用在image-level的域映射,可以将源域的image style转移到目标域上。Feature-le............原创 2022-04-16 00:27:33 · 311 阅读 · 0 评论 -
【领域泛化论文阅读】Generalizing to Unseen Domains: A Survey on Domain Generalization
领域泛化综述 Generalizing to Unseen Domains: A Survey on Domain Generalization原创 2022-04-15 23:25:47 · 913 阅读 · 0 评论