【领域泛化论文阅读】Feature Stylization and Domain-aware Contrastive Learning for Domain Generalization

        新域生成的方式一般有GAN和AdaI两种。论文认为GAN和AdaIN在新域生成方面有局限性,新域数量增加,GAN难以优化,AdaIN无法保留原始图像的语义信息,IN倾向于洗去类别区分信息。为了克服以上局限性,论文提出了一种新的领域泛化框架,基于小波变换实现风格转换。论文将特征的统计信息用于将原始特征风格化为具有新域属性的特征。为了在风格化过程中保留类别信息,首先将特征分解为高频和低频分量。利用statistics采样的得到的新域风格来风格化低频分量,同时保留高频分量的shape。最后,将两个分量merge生成新域feature。为了增强域鲁棒性,使用风格化后的特征和原始特征进行一致性预测,采用一致性损失来最大化模型预测之间的一致性,并且设计了领域感知的有监督对比损失来最小化风格化特征与原始特征之间的距离,在增强类别可分辨性的同时保持了领域不变性。

        通过交叉熵式(9)来最小化原始特征和风格化后的特征之间的差异,来保持模型输出一个与原始预测相一致的预测。通过参数τ对原始特征进行缩放,使风格化特征的预测有更低的熵。

        论文根据点积相似度最小化原始特征和样式化特征之间的距离。为了增强类别的可鉴别性,提出领域感知监督对比损失,不同域中抽取正样本,相同域中的不同类别的样本作为负样本,忽略了来自不同领域的负样本,可以获得类别鉴别特征,并实现域不变性。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值