今天还是分割字符串
392. Is Subsequence
这道题其实第一想法是用双指针。后来想了想其实dp也是可以的,毕竟是类似于找最大子串的操作
那么dp[i][j]代表的就是到s的i-1为止t中到i-1为止能匹配上多少个字符
初始化为0因为可能匹配不上
递推公式只和dp[i-1][j-1]和dp[i][j-1]有关。前者是是两个字串当前的字符相同的情况,后者是不相同的情况。因为所有位都要找到,所以不用dp[i-1][j]
class Solution:
def isSubsequence(self, s: str, t: str) -> bool:
dp=[[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
for i in range(1,len(s)+1):
for j in range(1,len(t)+1):
if s[i-1]==t[j-1]:
dp[i][j]=dp[i-1][j-1]+1
else:
dp[i][j]=dp[i][j-1]
return dp[-1][-1] == len(s)
115. Distinct Subsequences
这道题就比较难了。
dp[i][j]代表的就是到s的i-1为止能比配搭t中0到i-1的字符的组合数。
首先看初值,dp[i][0]初值为1因为空的时候至少都能匹配一个,然后看dp[0][j-1]为0因为s如果为空,什么都匹配不上
然后看递推公式。如果s[i-1]和t[j-1]相等,则要考虑两种情况,一种是上一个已经匹配上了(dp[i-1][j-1])还有一种就是不用上一个字符(dp[i-1][j])。如果不相等,则直接继承不用上一个字符的情况dp[i-1][j])
class Solution:
def numDistinct(self, s: str, t: str) -> int:
dp=[[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
for i in range(len(s)):
dp[i][0]=1
for i in range(1,len(s)+1):
for j in range(1,len(t)+1):
if s[i-1]==t[j-1]:
dp[i][j]=dp[i-1][j-1]+dp[i-1][j]
else:
dp[i][j]=dp[i-1][j]
return dp[-1][-1]