第五十五天|dp

文章介绍了使用动态规划方法解决两个字符串之间的子序列匹配问题,包括IsSubsequence和DistinctSubsequences两道题目。在IsSubsequence中,dp[i][j]表示s的前i个字符是否能匹配t的前j个字符;在DistinctSubsequences中,dp[i][j]表示s的前i个字符能形成t的前j个字符的不同子序列数量。两种情况都涉及到二维数组的初始化和递推计算。
摘要由CSDN通过智能技术生成

今天还是分割字符串

392. Is Subsequence

这道题其实第一想法是用双指针。后来想了想其实dp也是可以的,毕竟是类似于找最大子串的操作

那么dp[i][j]代表的就是到s的i-1为止t中到i-1为止能匹配上多少个字符

初始化为0因为可能匹配不上

递推公式只和dp[i-1][j-1]和dp[i][j-1]有关。前者是是两个字串当前的字符相同的情况,后者是不相同的情况。因为所有位都要找到,所以不用dp[i-1][j]

class Solution:
    def isSubsequence(self, s: str, t: str) -> bool:
        dp=[[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
        for i in range(1,len(s)+1):
            for j in range(1,len(t)+1):
                if s[i-1]==t[j-1]:
                    dp[i][j]=dp[i-1][j-1]+1
                else:
                    dp[i][j]=dp[i][j-1]
        return dp[-1][-1] == len(s)
            

115. Distinct Subsequences

这道题就比较难了。

dp[i][j]代表的就是到s的i-1为止能比配搭t中0到i-1的字符的组合数。

首先看初值,dp[i][0]初值为1因为空的时候至少都能匹配一个,然后看dp[0][j-1]为0因为s如果为空,什么都匹配不上

然后看递推公式。如果s[i-1]和t[j-1]相等,则要考虑两种情况,一种是上一个已经匹配上了(dp[i-1][j-1])还有一种就是不用上一个字符(dp[i-1][j])。如果不相等,则直接继承不用上一个字符的情况dp[i-1][j])

class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp=[[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0]=1
        for i in range(1,len(s)+1):
            for j in range(1,len(t)+1):
                if s[i-1]==t[j-1]:
                    dp[i][j]=dp[i-1][j-1]+dp[i-1][j]
                else:
                    dp[i][j]=dp[i-1][j]
        return dp[-1][-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值