这应该是免费教程中最完善的Python数据分析教程。没有之一!是时候解放双手了!

本文详述了Python数据分析库Numpy的使用,包括创建ndarray数组的各种方法,如array、ones、zeros、empty、arange等,以及数组操作、多维数组索引与切片、基本数学计算和数组通用函数。适合初学者了解和掌握Numpy。
摘要由CSDN通过智能技术生成

Numpy(未完结)

说明:通常所说的"数组","Numpy数组","ndarray"基本上都是指同一个东西,即ndarray对象。

Numpy常用函数以及用法

(1)创建ndarray数组

  1. 使用array函数

说明:他可以接收一切序列型的对象,然后产生一个新的含有传入数据的Numpy数组。除非用dtype自定义类型,否则他会根据你传入的数据类型自动帮你匹配合适的类型。
此类型规则为:如果有字符串,则优先字符串,如果没有字符串而有复数类型,则系统默认帮你判定为复数类型。然后依次为浮点数和整数。即优先级为"字符串>复数>浮点数>整数"。
代码如下:

import numpy as np
array = np.array(['Hello', 1+2j, 5.20, 5])
for i in array:
    print(i, ':', type(i))
print('===============================')
array = np.array([1+2j, 5.20, 5])
for i in array:
    print(i, ':', type(i))
print('===============================')
array = np.array([5.20, 5])
for i in array:
    print(i, ':', type(i))
print('===============================')
array = np.array([5])
for i in array:
    print(i, ':', type(i))

输出结果为:

Hello : <class 'numpy.str_'>
(1+2j) : <class 'numpy.str_'>
5.2 : <class 'numpy.str_'>
5 : <class 'numpy.str_'>
===============================
(1+2j) : <class 'numpy.complex128'>
(5.2+0j) : <class 'numpy.complex128'>
(5+0j) : <class 'numpy.complex128'>
===============================
5.2 : <class 'numpy.float64'>
5.0 : <class 'numpy.float64'>
===============================
5 : <class 'numpy.int32'>

  1. 使用ones和zeros函数

除此之外,还可以使用ones函数和zeros函数来创建一个全是1或者全是0的数组,我们只需要传递给他们一个需要创建的数组的形状即可。

代码示例如下:

import numpy as np
array = np.ones((3, 3))
print(array)
print('=================')
array = np.zeros((3, 3))
print(array)

输出结果:

[[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]
=================
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

  1. empty函数

函数说明:empty函数可以创建一个没有任何具体指的函数。我们在使用empty的时候只需要传入一个表示形状的元祖就可以了。值得注意的是,empty创建出来的数组初始值是不确定的随机值。
例如:

import numpy as np
array = np.empty((3, 3))
print(array)

输出结果如下(完全没有规律):

[[7.01573217e-322 0.00000000e+000 0.00000000e+000]
 [0.00000000e+000 0.00000000e+000 1.14623230e-321]
 [1.24610926e-306 1.61271680e-312 0.00000000e+000]
  1. arange函数

函数说明:arange函数用法与range函数类似。不同的是arange生成的是ndarray对象,即numpy数组。

例如运行如下代码:

 
import numpy as np
array1 = np.arange(10)
print(array1, type(array1))

输出结果如下:

[0 1 2 3 4 5 6 7 8 9] <class 'numpy.ndarray'>
  1. linspace函数

函数说明:此函数与arange函数有些相似。调用方法为 np.linspace(start= ,stop= ,num= ,endpoint= ,retstep= ,dtype= ,axis= )

参数说明:

  • start是数组起始数字

  • stop是数组结束数字

  • num(可选)控制结果中共有多少个元素

  • endpoint(可选)决定了中止值(stop)是否包含在内。若值为True,则包含stop,否则不包含。如果不写默认是True

  • retstep(可选)默认是False,如果指定为True,则结果会返回步长以及序列数组,从而产生一个元组作为输出

  • dtype(可选)为生成的数组的类型,可以自定义数据类型,不写则按那个规则 字符串>复数>浮点数>整数

  • axis(可选)默认是0 。很多函数都会有这个参数,这是个轴的意思。具体定义如下图:

运行如下代码:

import numpy as np
 
array1 = np.linspace(1,10,10)
print(array1)
print('='*30)
array2 = np.linspace(start = 1, stop = 10, num = 10, endpoint=True, dtype=int, ret
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值