文章目录
一、关于日知录
1.自省:
一开始写博客是想把自己的学习记录都放在一个地方,这样也不用存在电脑里分n个文件夹找来找去,现在写完5篇,确实有达到我给自己电脑管理文件减负的目的。不过,前面五篇博客只能说部分是直接塞图片,而且排版方面感觉不是很好。希望自己以后的博客还是多点自己的看法和思考,可以集各家之所长,站在巨人的肩膀上去看待问题去认识世界,也可以不那么急的想要契合“日知”每天一篇,给博客一点沉淀的时间,暂定小目标一周一篇吧。
2.接下来进入本篇:
先要肯定一点,debug是一个非常重要的能力,一个优秀的有逻辑的程序猿,思维严谨是一方面,他的debug能力绝对要好。其实也可以引申来看,遇到bug,去主动分析、自己解决,而不是自怨自艾,选择面对而不是选择逃避。
3.python的bug捕捉和测试:
在python中写代码中还有对bug的提前预判,以使程序正常进行,也有对部分内容进行的单元测试,以保证各个模块内部是正常的。之前对python错误处理机制的
try–except–finally语句一直看不懂,直到某day看到了廖雪峰教程内对这个语句的讲解我才明白,顿悟python真的妙!以及在本篇文章内可能大量引用教程中的例子,外加一些自己的理解。
5.关于后续的博客应该是记录爬虫或者飞机大战来深入理解python了。
二、错误处理
1.产生错误
显然,除数不能为0,即ZeroDivisionError
>>> r=10/0
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
r=10/0
ZeroDivisionError: division by zero
2.增加错误处理代码后
try:
print('try...')
r = 10 / 0
print('result:', r)
except ZeroDivisionError as e:
print('except:', e)
finally:
print('finally...')
print('END')
结果是:
try...
except: division by zero
finally...
END
(1)可见当程序运行到打印出 ‘try…’ 之后,遇到了 r=10/0这句有bug的代码,无法继续向下执行,于是跳到错误处理代码— except 语句块,当程序的错误类型与except内写的 ZeroDivisionError相符时,继续执行并打印’ except: ‘,并将e的错误内容’divison by zero’ 也打印出来。执行完except后,如果有finally语句块,则执行finally语句块,至此,执行完毕。
(2)出错时,会分析错误信息并定位错误发生的代码位置才是最关键的。
(3)这样的错误处理机制可以正常打印出错误原因,正确找到错误的地方,而不至于在别的模块白花力气找错。
3.当程序无误时的错误处理代码
当我们把0改成2之后,程序正常运行。
try:
print('try...')
r = 10 / 2
print('result:', r)
except ZeroDivisionError as e:
print('except:', e)
finally:
print('finally...')
print('END')
结果:
try...
result: 5.0
finally...
END
(1)此处要讲一下 的是 finally语句
由于没有错误发生,所以except语句块不会被执行,但是finally如果有,则一定会被执行(可以没有finally语句)。所以finally可以理解为不论错误发生与否,都会执行。
4.捕捉多种错误
这个也可以理解啊,因为你不确定会发生什么样的错误,有些常见的,有些基本的(手误引起的),如果发生了不同类型的错误,应该由不同的except语句块处理。
try:
print('try...')
r = 10 / int('a')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
finally:
print('finally...')
print('END')
int()函数可能会抛出ValueError,所以我们用一个except捕获ValueError,用另一个except捕获ZeroDivisionError。
try...
ValueError: invalid literal for int() with base 10: 'a'
finally...
END
(1)错误是ValueError
(2)同时还要注意:错误其实也是class,所有的错误类型都继承自BaseException。所以在使用except 时要注意,避免捕捉的错误 类型之间的从属关系和交叉关系,可以先确定一个大类,之后再在大类里面找小类。
(3)常见的错误类型和继承关系看这里:
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
(4)如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句
try:
print('try...')
r = 10 / int('2')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
else:
print('no error!')
finally:
print('finally...')
print('END')
正常运行的结果:
try...
result: 5.0
no error!
finally...
END
5.在合适的层次捕捉
不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。使用try…except捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()调用bar(),bar()调用foo(),结果foo()出错了,这时,只要main()捕获到了,就可以处理。
# err.py:
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
bar('0')
main()
此处是错误信息:
Traceback (most recent call last): #这是错误的跟踪信息
File "err.py", line 11, in <module> #调用main()出错了,在代码文件err.py的第11行代码,但原因是第9行
main()
File "err.py", line 9, in main #调用bar('0')出错了,在代码文件err.py的第9行代码,但原因是第6行:
bar('0')
File "err.py", line 6, in bar #原因是return foo(s) * 2这个语句出错了,但这还不是最终原因,继续往下看
return foo(s) * 2
File "err.py", line 3, in foo #原因是return 10 / int(s)这个语句出错了,这是错误产生的源头,因为下面打印了:
return 10 / int(s)
ZeroDivisionError: division by zero#根据错误类型ZeroDivisionError,我们判断,int(s)本身并没有出错,但是int(s)返回0,在计算10 / 0时出错,至此,找到错误源头。
出错的时候,一定要分析错误的调用栈信息,才能定位错误的位置。
6.记录错误
既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。
Python内置的logging模块可以非常容易地记录错误信息
# err_logging.py
import logging
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except Exception as e:
logging.exception(e)
main()
print('END')
程序打印完错误信息后会继续执行,并正常退出
$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar('0')
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END
7.抛出错误
因为错误是class,捕获一个错误就是捕获到该class的一个实例。自己定义一个关于错误的class,选择好继承关系,然后用raise语句抛出一个错误的实例,不过一般我们都使用python内置的错误类型。
接下来看一下raise语句
# err_reraise.py
def foo(s):
n = int(s)
if n==0:
raise ValueError('invalid value: %s' % s)
return 10 / n
def bar():
try:
foo('0')
except ValueError as e:
print('ValueError!')
raise
bar()
Traceback (most recent call last):
ValueError!
File "err_reraise.py", line 16, in <module>
bar()
File "err_reraise.py", line 11, in bar
foo('0')
File "err_reraise.py", line 6, in foo
raise ValueError('invalid value: %s' % s)
ValueError: invalid value: 0
捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。
程序也可以主动抛出错误,让调用者来处理相应的错误。但是,应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。
例:根据异常信息进行分析,定位出错误源头,并修复
题:
# -*- coding: utf-8 -*-
from functools import reduce
def str2num(s):
return int(s)
def calc(exp):
ss = exp.split('+')
ns = map(str2num, ss)
return reduce(lambda acc, x: acc + x, ns)
def main():
r = calc('100 + 200 + 345')
print('100 + 200 + 345 =', r)
r = calc('99 + 88 + 7.6')
print('99 + 88 + 7.6 =', r)
main()
(1)此处解读一下源程序:
reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算。
这里的reduce(lambda acc, x: acc + x, ns),可以等价于:
def a(acc,x):
return acc+x
return reduce(a,ns)
报错信息:
100 + 200 + 345 = 645
Traceback (most recent call last):
File "main.py", line 18, in <module>
main()
File "main.py", line 15, in main
r = calc('99 + 88 + 7.6')
File "main.py", line 10, in calc
return reduce(lambda acc, x: acc + x, ns)
File "main.py", line 5, in str2num
return int(s)
ValueError: invalid literal for int() with base 10: ' 7.6'
修改:
# -*- coding: utf-8 -*-
from functools import reduce
def str2num(s):
if isinstance(s, int):
return int(s)
else:
return float(s)
def calc(exp):
ss = exp.split('+')
ns = map(str2num, ss)
return reduce(lambda acc, x: acc + x, ns)
def main():
r = calc('100 + 200 + 345')
print('100 + 200 + 345 =', r)
r = calc('99 + 88 + 7.6')
print('99 + 88 + 7.6 =', r)
main()
# 结果
100 + 200 + 345 = 645.0
99 + 88 + 7.6 = 194.6
(2)利用 isinstance判断真假分别返整数或浮点数 ,即程序修改的部分
三、调试
1.用print()把可能有问题的变量打印出来看看
在win10 控制台操作
2.断言(assert)
不是很理解,但它最后会和使用print后,产生很多assert(在print里面是print)
3.logging
logging不会抛出错误,而且可以输出到文件
import logging
logging.basicConfig(level=logging.INFO) #指定记录信息的级别 INFO
s = '0'
n = int(s)
logging.info('n = %d' % n)
print(10 / n)
C:\Users\Desktop>python 1.txt
INFO:root:n = 0
Traceback (most recent call last):
File "1.txt", line 7, in <module>
print(10 / n)
ZeroDivisionError: division by zero
在win10 控制台操作
这就是logging的好处,它允许你指定记录信息的级别,有debug,info,warning,error等几个级别,当我们指定level=INFO时,logging.debug就不起作用了。同理,指定level=WARNING后,debug和info就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。
4. pdb
启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。
在win10 控制台操作,是一种单步调试的方法,但调试效率偏低,是一句一句的看,
# err.py
s = '0'
n = int(s)
print(10 / n)
终端操作:
C:\Users\Desktop>python -m pdb 1.txt
> c:\users\desktop\1.txt(2)<module>()
-> s = '0'
(Pdb) 1 # 输入命令l来查看代码,第一次输的是数字1,没反应。应该是小写字母l
1 # err.py
2 -> s = '0'
3 n = int(s)
4 print(10 / n)
[EOF]
(Pdb) n # 输入命令n可以单步执行代码
> c:\users\desktop\1.txt(3)<module>()
-> n = int(s)
(Pdb) n
> c:\users\desktop\1.txt(4)<module>()
-> print(10 / n)
(Pdb) p s # 任何时候都可以输入命令p 变量名来查看变量
'0'
(Pdb) p n
0
(Pdb) q # 输入命令q结束调试,退出程序
5.pdb.set_trace()
在win10 控制台操作
这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点。
# err.py
import pdb
s = '0'
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print(10 / n)
程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行:
C:\Users\Desktop>python 1.txt
> c:\users\desktop\1.txt(7)<module>()
-> print(10 / n)
(Pdb) p n
0
(Pdb) c
Traceback (most recent call last):
File "1.txt", line 7, in <module>
print(10 / n)
ZeroDivisionError: division by zero
相比之下,IDE 的调试过程要和蔼很多了。
四、单元测试
1.定义:
单元测试是用来对一个模块、一个函数或者一个类来进行正确性检验的测试工作。
2.理解
因为是学生,我打个比方,就是老师在期末考前出的一套测试卷,里面包含了检验是否掌握各个知识点的习题,如果都做对了,那么测试通过。如果有部分知识点不清楚有含糊或者理解有偏差,那么测试卷不能完整做出来,那么需要再回头复习巩固一遍知识点,再来做一遍测试题。
3.作用
现在来看看这个单元测试通过后有什么意义呢?如果我们对源程序的abs()函数代码做了修改,只需要再跑一遍单元测试,如果通过,说明我们的修改不会对abs()函数原有的行为造成影响,如果测试不通过,说明我们的修改与原有行为不一致,要么修改代码,要么修改测试。
4.实例
使用的IDE是pycharm。
(1)一个注意事项
在一个文件夹下建两个.py文件,一个是mydict.py,一个是单元测试程序mydict_test.py,在mydict_test.py中引入python自带的unittest模块。注意.py 文件名不要和 模块名一样,不然会报错,如下:
pycharm AttributeError: module ‘unittest’ has no attribute ‘TestCase’
这是脚本名称冲突所导致的报错。
脚本取名最好不要与模块和方法名一致,避免不必要的冲突。
改正方法就是把.py的文件名修改一下。
(2)代码
class Dict(dict):
def __init__(self, **kw):
super().__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
编写单元测试时,我们需要编写一个测试类,从unittest.TestCase继承。
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b='test')
self.assertEqual(d.a, 1) # 断言函数返回的结果与1相等
self.assertEqual(d.b, 'test')
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEqual(d.key, 'value')
def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEqual(d['key'], 'value')
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError): #期待抛出指定类型的Error,比如通过d['empty']访问不存在的key时,断言会抛出KeyError:
value = d['empty']
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError): #期待抛出指定类型的Error,通过d.empty访问不存在的key时,我们期待抛出AttributeError
value = d.empty
#运行单元测试
if __name__ == '__main__':
unittest.main()
·以test开头的方法就是测试方法,不以test开头的方法不被认为是测试方法,测试的时候不会被执行。
··在命令行中运行python单元测试脚本
运行方式1
$ python mydict_test.py运行方式2
$ python -m unittest mydict_test
运行结果
…
---------------------------------------------------------------------- Ran 5 tests in 0.000sOK
(3)交作业
eg.对Student类编写单元测试,结果发现测试不通过,请修改Student类,让测试通过:
原题:
# -*- coding: utf-8 -*-
import unittest
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def get_grade(self):
if self.score >= 60:
return 'B'
if self.score >= 80:
return 'A'
return 'C'
原题进行单元测试后的报错:
分析出是Student 类中的 get_grade()出错,一个是成绩的分类没分好,一个是成绩数值范围没确定。
..FF
======================================================================
FAIL: test_80_to_100 (__main__.TestStudent)
----------------------------------------------------------------------
Traceback (most recent call last):
File "main.py", line 19, in test_80_to_100
self.assertEqual(s1.get_grade(), 'A')
AssertionError: 'B' != 'A'
- B
+ A
======================================================================
FAIL: test_invalid (__main__.TestStudent)
----------------------------------------------------------------------
Traceback (most recent call last):
File "main.py", line 38, in test_invalid
s1.get_grade()
AssertionError: ValueError not raised
----------------------------------------------------------------------
Ran 4 tests in 0.001s
FAILED (failures=2)
修改:
# -*- coding: utf-8 -*-
import unittest
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def get_grade(self):
if self.score > 100:
raise ValueError
if self.score >= 80:
return 'A'
if self.score >= 60:
return 'B'
if self.score >=0:
return 'C'
else:
raise ValueError
进行单元测试:
class TestStudent(unittest.TestCase):
def test_80_to_100(self):
s1 = Student('Bart', 80)
s2 = Student('Lisa', 100)
self.assertEqual(s1.get_grade(), 'A')
self.assertEqual(s2.get_grade(), 'A')
def test_60_to_80(self):
s1 = Student('Bart', 60)
s2 = Student('Lisa', 79)
self.assertEqual(s1.get_grade(), 'B')
self.assertEqual(s2.get_grade(), 'B')
def test_0_to_60(self):
s1 = Student('Bart', 0)
s2 = Student('Lisa', 59)
self.assertEqual(s1.get_grade(), 'C')
self.assertEqual(s2.get_grade(), 'C')
def test_invalid(self):
s1 = Student('Bart', -1)
s2 = Student('Lisa', 101)
with self.assertRaises(ValueError):
s1.get_grade()
with self.assertRaises(ValueError):
s2.get_grade()
if __name__ == '__main__':
unittest.main()
结果:
....
----------------------------------------------------------------------
Ran 4 tests in 0.000s
OK
五、文档测试
1.Python内置的“文档测试”(doctest)模块可以直接提取python 写在注释中的代码并执行测试。
2.doctest严格按照Python交互式命令行的输入和输出来判断测试结果是否正确。只有测试异常的时候,可以用…表示中间一大段烦人的输出。
1.示例
# mydict2.py
class Dict(dict):
'''
Simple dict but also support access as x.y style.
>>> d1 = Dict()
>>> d1['x'] = 100
>>> d1.x
100
>>> d1.y = 200
>>> d1['y']
200
>>> d2 = Dict(a=1, b=2, c='3')
>>> d2.c
'3'
>>> d2['empty']
Traceback (most recent call last):
...
KeyError: 'empty'
>>> d2.empty
Traceback (most recent call last):
...
AttributeError: 'Dict' object has no attribute 'empty'
'''
def __init__(self, **kw):
super(Dict, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
if __name__=='__main__':
import doctest
doctest.testmod()
什么输出也没有。这说明我们编写的doctest运行都是正确的。
如果程序有问题,比如把__getattr__()方法注释掉,再运行就会报错:
C:\Users\金瑞阳\Desktop>python 1.txt
**********************************************************************
File "1.txt", line 8, in __main__.Dict
Failed example:
d1.x
Exception raised:
Traceback (most recent call last):
File "D:\python\lib\doctest.py", line 1330, in __run
compileflags, 1), test.globs)
File "<doctest __main__.Dict[2]>", line 1, in <module>
d1.x
AttributeError: 'Dict' object has no attribute 'x'
**********************************************************************
File "1.txt", line 14, in __main__.Dict
Failed example:
d2.c
Exception raised:
Traceback (most recent call last):
File "D:\python\lib\doctest.py", line 1330, in __run
compileflags, 1), test.globs)
File "<doctest __main__.Dict[6]>", line 1, in <module>
d2.c
AttributeError: 'Dict' object has no attribute 'c'
**********************************************************************
1 items had failures:
2 of 9 in __main__.Dict
***Test Failed*** 2 failures.
注意到最后3行代码。当模块正常导入时,doctest不会被执行。只有在命令行直接运行时,才执行doctest。所以,不必担心doctest会在非测试环境下执行。
2.练习
对函数fact(n)编写doctest并执行:
# -*- coding: utf-8 -*-
def fact(n):
'''
Calculate 1*2*...*n
>>> fact(1)
1
>>> fact(10)
?
>>> fact(-1)
?
'''
if n < 1:
raise ValueError()
if n == 1:
return 1
return n * fact(n - 1)
if __name__ == '__main__':
import doctest
doctest.testmod()
报错信息:
**********************************************************************
File "main.py", line 8, in __main__.fact
Failed example:
fact(10)
Expected:
?
Got:
3628800
**********************************************************************
File "main.py", line 10, in __main__.fact
Failed example:
fact(-1)
Exception raised:
Traceback (most recent call last):
File "/usr/local/lib/python3.8/doctest.py", line 1329, in __run
exec(compile(example.source, filename, "single",
File "<doctest __main__.fact[2]>", line 1, in <module>
fact(-1)
File "main.py", line 14, in fact
raise ValueError()
ValueError
**********************************************************************
1 items had failures:
2 of 3 in __main__.fact
***Test Failed*** 2 failures.
修改:
def fact(n):
'''
Calculate 1*2*...*n
>>> fact(1)
1
>>> fact(10)
3628800
>>> fact(-1)
Traceback (most recent call last):
...
ValueError
'''
if n < 1:
raise ValueError()
if n == 1:
return 1
return n * fact(n - 1)