智谱AI 开放平台使用(1)

智谱 AI 开放平台提供一系列具有不同功能和定价的大模型,包括通用大模型、超拟人大模型、图像大模型、向量大模型等,并且支持使用您的私有数据对模型进行微调。

注册申请

地址:智谱AI开放平台

image.png

新用户赠送资源包,有效期1个月

image.png

支持的模型

查看开发中需要使用api key

image.png

体验中心

可以选择不同的模型和参数进行测试

image.png

开发文档

注意:学习第三方工具,最好的办法是借助其提供的帮助文档和示例程序

先看下官方给的帮助文档,对一些概念有个大致的了解,比如Embedding、Token表示的意思

image.png

提示词工程介绍

image.png

查看接口文档,了解其基本用法

image.png

基本使用

参考sdk开发指南

导入jar

<dependency>
  <groupId>cn.bigmodel.openapi</groupId>
  <artifactId>oapi-java-sdk</artifactId>
  <version>release-V4-2.2.0</version>
</dependency>

同步调用

package com.renr.zhipuraw.app;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.zhipu.oapi.ClientV4;
import com.zhipu.oapi.Constants;
import com.zhipu.oapi.service.v4.model.ChatCompletionRequest;
import com.zhipu.oapi.service.v4.model.ChatMessage;
import com.zhipu.oapi.service.v4.model.ChatMessageRole;
import com.zhipu.oapi.service.v4.model.ModelApiResponse;

import java.util.ArrayList;
import java.util.List;

public class App1 {

    private static ClientV4 client = new ClientV4.Builder("自己的apikey").build();
    private static final String requestIdTemplate = "mycompany-%d";

    public static void main(String[] args) {
        testInvoke();
    }

    /**
     * 同步调用
     */
    private static void testInvoke() {
        List<ChatMessage> messages = new ArrayList<>();
        ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "你作为一个专业的医生,请给出腰间盘突出的治疗方案");
        messages.add(chatMessage);
        String requestId = String.format(requestIdTemplate, System.currentTimeMillis());

        ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
                .model(Constants.ModelChatGLM4)
                .stream(Boolean.FALSE)
                .invokeMethod(Constants.invokeMethod)
                .messages(messages)
                .requestId(requestId)
                .build();
        ModelApiResponse invokeModelApiResp = client.invokeModelApi(chatCompletionRequest);
        try {
            ObjectMapper mapper = new ObjectMapper();
            System.out.println("model output:" + mapper.writeValueAsString(invokeModelApiResp));
        } catch (JsonProcessingException e) {
            e.printStackTrace();
        }
    }
}

流式调用

调用后可以流式的实时获取到结果直到结束

package com.renr.zhipuraw.app;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ObjectNode;
import com.zhipu.oapi.ClientV4;
import com.zhipu.oapi.Constants;
import com.zhipu.oapi.service.v4.model.*;
import io.reactivex.Flowable;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicBoolean;

/**
 * 使用函数
 */
public class App6 {

    private static ClientV4 client = new ClientV4.Builder("api key").build();
    private static final String requestIdTemplate = "mycompany-%d";

    public static void main(String[] args) throws JsonProcessingException {
        testSseInvoke();
    }

    private static void testSseInvoke() {
        List<ChatMessage> messages = new ArrayList<>();
        ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "作为一名营销专家,请为智谱开放平台创作一个吸引人的slogan");
        messages.add(chatMessage);
        String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
        ObjectMapper objectMapper = new ObjectMapper();
        ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
        .model(Constants.ModelChatGLM4)
        .stream(Boolean.TRUE)
        .messages(messages)
        .requestId(requestId)
        .build();
        ModelApiResponse sseModelApiResp = client.invokeModelApi(chatCompletionRequest);
        if (sseModelApiResp.isSuccess()) {
            AtomicBoolean isFirst = new AtomicBoolean(true);
            ChatMessageAccumulator chatMessageAccumulator = mapStreamToAccumulator(sseModelApiResp.getFlowable())
            .doOnNext(accumulator -> {
                {
                    if (isFirst.getAndSet(false)) {
                        System.out.print("Response: ");
                    }
                    if (accumulator.getDelta() != null && accumulator.getDelta().getTool_calls() != null) {
                        String jsonString = objectMapper.writeValueAsString(accumulator.getDelta().getTool_calls());
                        System.out.println("tool_calls: " + jsonString);
                    }
                    if (accumulator.getDelta() != null && accumulator.getDelta().getContent() != null) {
                        System.out.print(accumulator.getDelta().getContent());
                    }
                }
            })
            .doOnComplete(System.out::println)
            .lastElement()
            .blockingGet();

            ObjectNode objectNode = objectMapper.createObjectNode();
            objectNode.put("finish_reason", chatMessageAccumulator.getChoice().getFinishReason());
            objectNode.put("index", 0L);
            objectNode.put("delta", chatMessageAccumulator.getDelta());
            Choice choice = new Choice(objectNode);
            List<Choice> choices = new ArrayList<>();
            choices.add(choice);
            ModelData data = new ModelData();
            data.setChoices(choices);
            data.setUsage(chatMessageAccumulator.getUsage());
            data.setId(chatMessageAccumulator.getId());
            data.setCreated(chatMessageAccumulator.getCreated());
            data.setRequestId(chatCompletionRequest.getRequestId());
            sseModelApiResp.setFlowable(null);
            sseModelApiResp.setData(data);
        }
        // System.out.println("model output:" + JSON.toJSONString(sseModelApiResp));
    }

    public static Flowable<ChatMessageAccumulator> mapStreamToAccumulator(Flowable<ModelData> flowable) {
        return flowable.map((chunk) -> {
            return new ChatMessageAccumulator(((Choice) chunk.getChoices().get(0)).getDelta(), (ChatMessage) null, (Choice) chunk.getChoices().get(0), chunk.getUsage(), chunk.getCreated(), chunk.getId());
        });
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值