智谱 AI 开放平台提供一系列具有不同功能和定价的大模型,包括通用大模型、超拟人大模型、图像大模型、向量大模型等,并且支持使用您的私有数据对模型进行微调。
注册申请
地址:智谱AI开放平台
新用户赠送资源包,有效期1个月
支持的模型
查看开发中需要使用api key
体验中心
可以选择不同的模型和参数进行测试
开发文档
注意:学习第三方工具,最好的办法是借助其提供的帮助文档和示例程序
先看下官方给的帮助文档,对一些概念有个大致的了解,比如Embedding、Token表示的意思
提示词工程介绍
查看接口文档,了解其基本用法
基本使用
参考sdk开发指南
导入jar
<dependency>
<groupId>cn.bigmodel.openapi</groupId>
<artifactId>oapi-java-sdk</artifactId>
<version>release-V4-2.2.0</version>
</dependency>
同步调用
package com.renr.zhipuraw.app;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.zhipu.oapi.ClientV4;
import com.zhipu.oapi.Constants;
import com.zhipu.oapi.service.v4.model.ChatCompletionRequest;
import com.zhipu.oapi.service.v4.model.ChatMessage;
import com.zhipu.oapi.service.v4.model.ChatMessageRole;
import com.zhipu.oapi.service.v4.model.ModelApiResponse;
import java.util.ArrayList;
import java.util.List;
public class App1 {
private static ClientV4 client = new ClientV4.Builder("自己的apikey").build();
private static final String requestIdTemplate = "mycompany-%d";
public static void main(String[] args) {
testInvoke();
}
/**
* 同步调用
*/
private static void testInvoke() {
List<ChatMessage> messages = new ArrayList<>();
ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "你作为一个专业的医生,请给出腰间盘突出的治疗方案");
messages.add(chatMessage);
String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
.model(Constants.ModelChatGLM4)
.stream(Boolean.FALSE)
.invokeMethod(Constants.invokeMethod)
.messages(messages)
.requestId(requestId)
.build();
ModelApiResponse invokeModelApiResp = client.invokeModelApi(chatCompletionRequest);
try {
ObjectMapper mapper = new ObjectMapper();
System.out.println("model output:" + mapper.writeValueAsString(invokeModelApiResp));
} catch (JsonProcessingException e) {
e.printStackTrace();
}
}
}
流式调用
调用后可以流式的实时获取到结果直到结束
package com.renr.zhipuraw.app;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ObjectNode;
import com.zhipu.oapi.ClientV4;
import com.zhipu.oapi.Constants;
import com.zhipu.oapi.service.v4.model.*;
import io.reactivex.Flowable;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicBoolean;
/**
* 使用函数
*/
public class App6 {
private static ClientV4 client = new ClientV4.Builder("api key").build();
private static final String requestIdTemplate = "mycompany-%d";
public static void main(String[] args) throws JsonProcessingException {
testSseInvoke();
}
private static void testSseInvoke() {
List<ChatMessage> messages = new ArrayList<>();
ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "作为一名营销专家,请为智谱开放平台创作一个吸引人的slogan");
messages.add(chatMessage);
String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
ObjectMapper objectMapper = new ObjectMapper();
ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
.model(Constants.ModelChatGLM4)
.stream(Boolean.TRUE)
.messages(messages)
.requestId(requestId)
.build();
ModelApiResponse sseModelApiResp = client.invokeModelApi(chatCompletionRequest);
if (sseModelApiResp.isSuccess()) {
AtomicBoolean isFirst = new AtomicBoolean(true);
ChatMessageAccumulator chatMessageAccumulator = mapStreamToAccumulator(sseModelApiResp.getFlowable())
.doOnNext(accumulator -> {
{
if (isFirst.getAndSet(false)) {
System.out.print("Response: ");
}
if (accumulator.getDelta() != null && accumulator.getDelta().getTool_calls() != null) {
String jsonString = objectMapper.writeValueAsString(accumulator.getDelta().getTool_calls());
System.out.println("tool_calls: " + jsonString);
}
if (accumulator.getDelta() != null && accumulator.getDelta().getContent() != null) {
System.out.print(accumulator.getDelta().getContent());
}
}
})
.doOnComplete(System.out::println)
.lastElement()
.blockingGet();
ObjectNode objectNode = objectMapper.createObjectNode();
objectNode.put("finish_reason", chatMessageAccumulator.getChoice().getFinishReason());
objectNode.put("index", 0L);
objectNode.put("delta", chatMessageAccumulator.getDelta());
Choice choice = new Choice(objectNode);
List<Choice> choices = new ArrayList<>();
choices.add(choice);
ModelData data = new ModelData();
data.setChoices(choices);
data.setUsage(chatMessageAccumulator.getUsage());
data.setId(chatMessageAccumulator.getId());
data.setCreated(chatMessageAccumulator.getCreated());
data.setRequestId(chatCompletionRequest.getRequestId());
sseModelApiResp.setFlowable(null);
sseModelApiResp.setData(data);
}
// System.out.println("model output:" + JSON.toJSONString(sseModelApiResp));
}
public static Flowable<ChatMessageAccumulator> mapStreamToAccumulator(Flowable<ModelData> flowable) {
return flowable.map((chunk) -> {
return new ChatMessageAccumulator(((Choice) chunk.getChoices().get(0)).getDelta(), (ChatMessage) null, (Choice) chunk.getChoices().get(0), chunk.getUsage(), chunk.getCreated(), chunk.getId());
});
}
}