摘要
车辆路径问题(VRP)是研究最深入的组合优化问题之一,针对其提出了许多模型和算法。 为了解决现实VRP应用程序中涉及的复杂性,不确定性和动态性,已将机器学习(ML)方法与分析方法结合使用,以增强跨不同问题解决方案的问题表述和算法性能。 但是,相关论文散布在几个传统的研究领域中,它们具有非常不同的,有时是令人困惑的术语。 本文介绍了混合方法的首次全面综述,该方法结合了分析技术和ML工具来解决VRP问题。 具体来说,我们回顾了有关ML辅助VRP建模和ML辅助VRP优化的新兴研究流。 我们得出结论,机器学习可以有益于增强VRP建模,并提高用于在线和离线VRP优化的算法的性能。 最后,讨论了VRP研究的挑战和未来的机会。
背景
车辆路径问题(VRP)是运筹学领域中研究最多的问题之一。 在Clarivate的Web of Science中使用关键字“车辆路线”进行的搜索返回了8,000多篇论文,其中包括131篇评论论文。 引起这一重大研究关注的原因之一是由于电子商务行业的蓬勃发展,导致运输和物流业呈指数级增长。 随着计算的进步强大的功能以及建模和解决方案方法论的进步,与以前相比,现在可以在更短的时间内解决更大尺寸的VRP。 有许多与VRP相关的调查文件。 Vidal,Laporte和Matl(2020)很好地概述了不同的VRP变体,包括以不同的目标和性能指标为特征的新兴变体。 Braysy和Gendreau(2005a,b)对不同VRP的启发式方法进行了全面的回顾。 他们审查的大多数论文都集中在确定性VRP上,在这些VRP中,假定问题参数在解决问题之前是确定性的且已知的。 Gendreau,Laporte和Seguin(1996)对随机车辆路径进行了综述,其中一些问题参数被认为是随机的,而Pillac等人(1996)。 (2013年)调查了所有动态车辆路径问题,其中随着时间的流逝动态揭示了问题参数。 考虑到随机VRP和动态VRP之间的紧密联系,Ritzinger,Puchinger和Hartl(2016)对动态和随机车辆路径问题进行了综合回顾。
尽管针对VRP问题进行了大量研究,但是由于以下原因,要解决一些实际的VRP应用仍然非常困难。
首先,大多数现有的VRP研究集中在不同VRP变体的分析特性和相应的解决方法上。 这类研究通常以使用数学模型来定义关键目标和约束条件为主导(Vidal,Laporte和Matl 2020)。 但是,为了方便进行理论分析和解决问题,几乎所有数学模型都与许多假设相关联,其中一些假设对于现实生活中的应用可能不切实际。
估计相关问题参数也可能具有挑战性。 对于从业者而言,将现有模型和算法转化为成功的现实应用成为一个障碍。
其次,已经开发了许多VRP模型,以数学方式表述与VRP相关的不确定性。 但是,它们中的大多数仅限于理论或小规模的实证研究。 这些模型和建议的解决方法在实际应用中的实现很少,并且仍然面临着巨大的挑战。
越来越需要使这些模型更加实用。
为了解决其中的一些问题,例如不现实的模型假设,参数估计的困难以及解决方案算法的实用性,VRP的研究方向是新兴的,它使用混合方法将数据分析和机器学习工具与基于传统优化的技术相结合。 借助分析和ML,可以显着增强传统的VRP建模和解决方案技术。 本文旨在为VRP应用程序提供这种混合方法的全面综述。
传统上,VRP研究仅限于运筹学(OR)社区。
但是,随着机器学习方法的