宇宙安全声明:
1.这份文档来自我的一份课程作业, 由于笔者水平有限, 所以在内容上写得会比较粗糙, 或者出现一些错误.如有错误, 敬请谅解并指正.
2. 后续可能随缘更新?【如果又有空去读什么其他文章的话?】
3. 由于CSDN说我正文太长了,我在CSDN上就只能分成多个部分发表了。
- 格子Boltzmann方法
- 多速LBE模型
- 双分布函数LBE模型
多速LBE模型
多速LBE模型(即Multi-Speed LBE)是一种完全基于LBM经典算法的改进.这类方法演化方程与常规LBM一致, 在保持算法不变的基础上通过使用比常规LBM更为复杂的离散速度模型还原高阶速度矩.它因只使用单一分布函数,物理描述上更接近事实而受到了广泛关注.并且使用更多的离散速度达到高阶精度的思路亦已经被广泛拓展到各种各样的LBM模拟中. 虽然Qian1和Alexander等2才是早期的提出者, 但本章首先以Chen等 3 的高阶MS-LBGK模型的二维形式为例引入多速LBM的概念, 随后介绍几种不同思路下的MS-LBM改进形式.
高阶MS-LBGK模型
Chen等 3 提出的多速LBM的平衡态分布函数定义为
f σ i ( e q ) = A σ + B σ ⋅ ( c σ i ⋅ u ) + C σ ∥ u ∥ 2 + D σ ⋅ ( c σ i ⋅ u ) 2 + E σ ∥ u ∥ 2 ⋅ ( c σ i ⋅ u ) + F σ ⋅ ( c σ i ⋅ u ) 3 + G σ ∥ u ∥ 2 ⋅ ( c σ i ⋅ u ) 2 + H σ ∥ u ∥ 4 (2.1) \begin{aligned} f_{\sigma i}^{(eq)} = & A_{\sigma} + B_{\sigma} \cdot \left( \mathbf{c}_{\sigma i} \cdot \mathbf{u} \right) + C_{\sigma}\left\| \mathbf{u} \right\|^{2} + D_{\sigma} \cdot \left( \mathbf{c}_{\sigma i} \cdot \mathbf{u} \right)^{2} \\ & + E_{\sigma}\left\| \mathbf{u} \right\|^{2} \cdot \left( \mathbf{c}_{\sigma i} \cdot \mathbf{u} \right) + F_{\sigma} \cdot \left( \mathbf{c}_{\sigma i} \cdot \mathbf{u} \right)^{3} \\ & + G_{\sigma}\left\| \mathbf{u} \right\|^{2} \cdot \left( \mathbf{c}_{\sigma i} \cdot \mathbf{u} \right)^{2} + H_{\sigma}\left\| \mathbf{u} \right\|^{4} \\ \end{aligned} \tag{2.1} fσi(eq)=Aσ+Bσ⋅(cσi⋅u)+Cσ∥u∥2+Dσ⋅(cσi⋅u)2+Eσ∥u∥2⋅(cσi⋅u)+Fσ⋅(cσi⋅u)3+Gσ∥u∥2⋅(cσi⋅u)2+Hσ∥u∥4(2.1)
其中 A σ A_{\sigma} Aσ 到 H σ H_{\sigma} Hσ 均为待定参数, 它们均可被表示为内能 e e e 和密度 ρ \rho ρ 的复合函数, 即 X σ = ( x σ 0 + x σ 1 e + x σ 2 e 2 ) ρ X_{\sigma} = \left( x_{\sigma 0} + x_{\sigma 1}e + x_{\sigma 2}e^{2} \right)\rho Xσ=(xσ0+xσ1e+xσ2e2)ρ .并且 f σ i ( e q ) f_{\sigma i}^{(eq)} fσi(eq) 的各阶速度矩需要满足下列约束条件:
∑ σ i f σ i ( e q ) = ρ , ∑ σ i c σ i f σ i ( e q ) = ρ u , ∑ σ i c σ i c σ i f σ i ( e q ) = ρ u u + p I \sum_{\sigma i} f_{\sigma i}^{(eq)} = \rho, \qquad \sum_{\sigma i} {\mathbf{c}_{\sigma i}f_{\sigma i}^{(eq)}} = \rho\mathbf{u}, \qquad \sum_{\sigma i} {\mathbf{c}_{\sigma i}\mathbf{c}_{\sigma i}f_{\sigma i}^{(eq)}} = \rho\mathbf{uu} + p\mathbf{I} σi∑fσi(eq)=ρ,σi∑cσifσi(eq)=ρu,σi∑cσicσifσi(eq)=ρuu+pI
∑ σ i c σ i c σ i c σ i f σ i ( e q ) = ρ u u u + p [ u δ ] \sum_{\sigma i} {\mathbf{c}_{\sigma i}\mathbf{c}_{\sigma i}\mathbf{c}_{\sigma i}f_{\sigma i}^{(eq)}} = \rho\mathbf{uuu} + p\ [\mathbf{u \delta} ] σi∑cσicσicσifσi(eq)=ρuuu+p [uδ]
∑ σ i c σ i c σ i ∣ c σ i ∣ 2 f σ i ( e q ) = ρ ∣ u ∣ 2 u u + p ( D + 4 ) u u + p ∣ u ∣ 2 I + 2 ( D + 2 ) p e D \sum_{\sigma i} {\mathbf{c}_{\sigma i}\mathbf{c}_{\sigma i} \vert{c_{\sigma i}}\vert ^{2}f_{\sigma i}^{(eq)}} = \rho |u|^{2} \mathbf{uu}\mathbf{+}p(D + 4)\mathbf{uu}\mathbf{+}p|u|^{2}\mathbf{I}\mathbf{+}\frac{2(D + 2)pe}{D} σi∑cσicσi∣cσi∣2fσi(eq)=ρ∣u∣2uu+p(D+4)uu+p∣u∣2I+D2(D+2)pe
其中压强 p = 2 ρ e D p = \frac{2\rho e}{D} p=D2ρe , 三阶张量 [ u δ ] = u α δ β γ + u β δ α γ + u γ δ α β \left\lbrack \mathbf{u\delta} \right\rbrack = \ u_{\alpha}\delta_{\beta\gamma} + u_{\beta}\delta_{\alpha\gamma} + u_{\gamma}\delta_{\alpha\beta} [uδ]= uαδβγ+uβδαγ+uγδαβ .
为满足这五个守恒方程的约束, 张量 ∑ i c σ i c σ i . . . c σ i ⏞ n 个 \displaystyle \sum_i \overset{n\text{个}}{\overbrace{\mathbf{c}_{\sigma i}\mathbf{c}_{\sigma i}...\mathbf{c}_{\sigma i}}}\qquad i∑cσicσi...cσi n个 需要在 0~6 阶均为各向同性.因此Chen等 3 使用的离散速度集表示为
c σ i = c p k i ′ = P e r m { k ( ± 1 , … , ± 1 ⏟ p , 0 , . . . , 0 ⏞ D − p ) } \mathbf{c}_{\sigma i} = \mathbf{c}_{pki}^{'} = \mathbf{Perm}\left\{ k\left( \underbrace{\pm 1,\ldots, \pm 1}_{p} , \overset{D - p}{\overbrace{0,...,0}} \right) \right\} cσi=cpki′=Perm⎩ ⎨ ⎧k p ±1,…,±1,0,...,0 D−p ⎭ ⎬ ⎫
这里 P e r m \mathbf{Perm} Perm 是由 ( ∗ ) (*) (∗) 的所有排列构成的集合, k k k 为格子的缩放系数, 且 σ = c σ i 2 = k 2 p \sigma = c_{\sigma i}^{2} = k^{2}p σ=cσi2=k2p. 因此, 高阶MS-LBGK模型的运动粘度为 μ = 2 ρ e D ( τ − 1 2 ) \mu = \frac{2\rho e}{D}\left( \tau - \frac{1}{2} \right) μ=D2ρe(τ−21) , 体积粘度 λ = − 2 μ D \lambda = - \frac{2\mu}{D} λ=−D2μ , 热扩散系数 κ = ( D + 2 ) ρ e D ( τ − 1 2 ) \kappa = \frac{(D + 2)\rho e}{D}\left( \tau - \frac{1}{2} \right) κ=D(D+2)ρe(τ−21) .对于气体常数为 $R_g $ 的单原子分子, 定压和定容比热容分别为 c p = ( D + 2 ) R g / 2 c_{p} = (D + 2)R_g /2 cp=(D+2)Rg/2 和 c v = D R g / 2 c_{v} = D R_g /2 cv=DRg/2 .由于无量纲格子系统中 R g = 1 R_g = 1 Rg=1 , 该模型的Prandtl数为 P r = μ c p / κ = 1 Pr = \mu c_{p}/\kappa = 1 Pr=μcp/κ=1 .这也是MS-LBGK模型这类建模方式的常见问题.
目前, 学界已有数类方式在多速LBE模型中实现对Prandtl数的自由调节, 如:双松弛时间方法4;引入熵格式5 6 7 ;修改网格速度的定义 8 9 10 等.由于已有文献指出若不局限于常规晶格模型则可获得更高精度的离散格式, 并且大多数方法都涉及对DnQb模型的修改, 因此这里仅简要介绍前两种方式的实现思路.
对多速LBE模型的改进
基于双松弛时间的实现
基于双松弛时间的方法将碰撞分为由 f i f_i fi 和 f − i f_{-i} f−i 控制的两个部分, 并分别进行松弛.以Chen等4提出的双松弛模型为例, 其演化方程为(不考虑外力项):
f i ( x + c i Δ t , t + Δ t ) − f i ( x , t ) = Ω i + Ω i (2.2) f_i\left( \mathbf{x} + \mathbf{c}_i\Delta t,t + \Delta t \right) - f_i\left( \mathbf{x},t \right) = \Omega_i + \Omega_{\mathbb{i}} \tag{2.2} fi(x+ciΔt,t+Δt)−fi(x,t)=Ωi+Ωi(2.2)
其中
Ω i = − 1 τ 1 ( f i − f i ( e q ) ) , Ω i = − 1 τ 2 ( f − i − f − i ( e q ) ) \Omega_i = - \frac{1}{\tau_{1}}\left( f_i - f_i^{(eq)} \right),\qquad \Omega_{\mathbb{i}} = - \frac{1}{\tau_{2}}\left( f_{- i} - f_{- i}^{(eq)} \right) Ωi=−τ11(fi−fi(eq)),Ωi=−τ21(f−i−f−i(eq))
下标 − i -i −i 表示 c − i = − c i \mathbf{c}_{- i} = - \mathbf{c}_i c−i=−ci 方向. τ v = τ 1 τ 2 / ( τ 1 + τ 2 ) \tau_{v} = \tau_{1}\tau_{2}/(\tau_{1} + \tau_{2}) τv=τ1τ2/(τ1+τ2) , τ k = τ 1 τ 2 / ( τ 2 − τ 1 ) \tau_{k} = \tau_{1}\tau_{2}/(\tau_{2} - \tau_{1}) τk=τ1τ2/(τ2−τ1) .Chen等4指出其导出的宏观方程组为
D ρ D t = ρ ∇ ⋅ u ∂ ( ρ u ) ∂ t + ∇ ⋅ ( ρ u u ) = − ∇ p + ∇ ⋅ T v ∂ ( ρ e ) ∂ t + ∇ ⋅ ( ρ e u ) = p ∇ ⋅ u + ∇ ⋅ ( κ ∇ T ) + T k : ∇ u \begin{aligned} \frac{D\rho}{Dt} &= \rho\nabla \cdot \mathbf{u} \\ \frac{\partial\left( \rho\mathbf{u} \right)}{\partial t} + \nabla \cdot \left( \rho\mathbf{uu} \right) &= - \nabla p + \nabla \cdot \mathbf{T}_{v} \\ \frac{\partial(\rho e)}{\partial t} + \nabla \cdot \left( \rho e\mathbf{u} \right) &= p\nabla \cdot \mathbf{u} + \nabla \cdot (\kappa\nabla T) + \mathbf{T}_{k}:\nabla\mathbf{u} \end{aligned} DtDρ∂t∂(ρu)+∇⋅(ρuu)∂t∂(ρe)+∇⋅(ρeu)=ρ∇⋅u=−∇p+∇⋅Tv=p∇⋅u+∇⋅(κ∇T)+Tk:∇u
其中
T v = 2 μ v S + λ v ( ∇ ⋅ u ) I , T k = 2 μ k S + λ k ( ∇ ⋅ u ) I \mathbf{T}_{v} = 2\mu_{v}\mathbf{S} + \lambda_{v}\left( \nabla \cdot \mathbf{u} \right)\mathbf{I},\mathbf{\qquad }\mathbf{T}_{k} = 2\mu_{k}\mathbf{S} + \lambda_{k}\left( \nabla \cdot \mathbf{u} \right)\mathbf{I} Tv=2μvS+λv(∇⋅u)I,Tk=2μkS+λk(∇⋅u)I
S \mathbf{S} S 为应变率张量.各输运系数为
μ v = 2 D ρ e ( τ v − 1 2 ) , λ v = − 4 D 2 ρ e ( τ v − 1 2 ) μ k = 2 D ρ e ( τ k − 1 2 ) , λ k = − 4 D 2 ρ e ( τ k − 1 2 ) \begin{aligned} \mu_{v} = \frac{2}{D}\rho e\left( \tau_{v} - \frac{1}{2} \right),& \lambda_{v} = \frac{- 4}{D^{2}}\rho e\left( \tau_{v} - \frac{1}{2} \right) \\ \mu_{k} = \frac{2}{D}\rho e\left( \tau_{k} - \frac{1}{2} \right),& \lambda_{k} = \frac{- 4}{D^{2}}\rho e\left( \tau_{k} - \frac{1}{2} \right) \end{aligned} μv=D2ρe(τv−21),μk=D2ρe(τk−21),λv=D2−4ρe(τv−21)λk=D2−4ρe(τk−21)
温度 T = D e / 2 T = De/2 T=De/2 , 热传导系数 κ = ρ e ( D + 2 ) ( τ k − 1 / 2 ) / D \kappa = \rho e(D + 2)\left( \tau_{k} - 1/2 \right)/D κ=ρe(D+2)(τk−1/2)/D. 综上所述, 该模型的Prandtl数为
P r = μ v c p κ = 2 τ v − 1 2 τ k − 1 Pr = \frac{\mu_{v}c_{p}}{\kappa} = \frac{2\tau_{v} - 1}{2\tau_{k} - 1} Pr=κμvcp=2τk−12τv−1
这种方法通过使用两个松弛时间 τ 1 , τ 2 \tau_{1},\tau_{2} τ1,τ2 分别对动量和能量方程进行松弛( τ 1 , τ 2 > 1 2 \tau_{1},\tau_{2} > \frac{1}{2} τ1,τ2>21), 缓解LBGK单个松弛时间的参数依赖性.但由于能量方程的粘性应力项 T k ≠ T v \mathbf{T}_{k} \neq \mathbf{T}_{v} Tk=Tv , 因而其能量方程是与动量方程存在冲突的.
基于熵函数的实现
熵格子Boltzmann方程(Entropic Lattice Boltzmann Equation, ELBE)是另一种基于传统LBE的修改.这里以单松弛的ELBE为例, 它将LBE的演化方程修改为
f i ( x + c i Δ t , t + Δ t ) − f i ( x , t ) = − α β ( f i − f i ( e q ) ) (2.3) f_i\left( \mathbf{x} + \mathbf{c}_i\Delta t,t + \Delta t \right) - f_i\left( \mathbf{x},t \right) = - \alpha\beta\left( f_i - f_i^{(eq)} \right) \tag{2.3} fi(x+ciΔt,t+Δt)−fi(x,t)=−αβ(fi−fi(eq))(2.3)
其中 β = 1 / ( 1 + 2 ν / c s 2 ) \beta = 1/(1 + 2\nu/c_{s}^{2}) β=1/(1+2ν/cs2) , ν \nu ν 为运动粘度. α \alpha α 为方程 H ( f + α ( f − f ( e q ) ) ) = H ( f ) H\left( f + \alpha\left( f - f^{(eq)} \right) \right) = H(f) H(f+α(f−f(eq)))=H(f) 的解, 熵函数 H H H 定义为11
H = ∑ i f i ln ( f i w i ) (2.4) H = \sum_i^{}{f_i\ln\left( \frac{f_i}{w_i} \right)} \tag{2.4} H=i∑filn(wifi)(2.4)
α \alpha α 的解可通过迭代法或近似公式计算12.由于部分常规DnQb模型在使用 f ( e q ) f^{(eq)} f(eq) 的低阶展开(如式(1.10))时无法满足熵方程13, 因此该方法通常需要对DnQb模型进行修改, 或搭配多速DnQb模型一同使用.
Pransianakis等5 7 在ELBE的总体框架上, 将碰撞项视为从 f i f_i fi 到中间态 f i ∗ f_i^{*} fi∗ 再到平衡态 f i ( e q ) f_i^{(eq)} fi(eq) 的两步松弛, 即:
− 1 τ 1 ( f i − f i ∗ ) − 1 τ 2 ( f i ∗ − f i ( e q ) ) \frac{-1}{\tau_{1}}\left( f_i - f_i^{*} \right) - \frac{1}{\tau_{2}}\left( f_i^{*} - f_i^{(eq)} \right) τ1−1(fi−fi∗)−τ21(fi∗−fi(eq))
中间态 f i ∗ f_i^{*} fi∗ 是平衡态的扰动, 即: f i ∗ = f i ( e q ) + δ f i ∗ f_i^{*} = f_i^{(eq)} + \delta f_i^{*} fi∗=fi(eq)+δfi∗.校正量 δ f i ∗ \delta f_i^{*} δfi∗ 的计算可基于 “中间态的热通量不变” 假设构造 δ f i ∗ \delta f_i^{*} δfi∗ 的方程组进行求解5. 松弛时间为 τ 1 = μ / ρ T 0 \tau_{1} = \mu/\rho T_0 τ1=μ/ρT0 和 τ 2 = 2 κ / ρ T 0 \tau_{2} = 2\kappa/\rho T_0 τ2=2κ/ρT0 , 分别控制应力张量和热流量的松弛, T 0 T_0 T0 是格子系统中的参考温度.因此, Prandtl数为 Pr = 4 τ 1 / τ 2 \Pr = 4\tau_{1}/\tau_{2} Pr=4τ1/τ2 .
[NOTE]
需要强调的是, 在Pransianakis等5在文中使用的D2Q9模型里, 虽然特征速度方向与式(1.7)一致, 但各个 c i \mathbf{c}_i ci的权重 W i W_i Wi 是温度 T T T的函数, 即: W i = ( 1 − T 2 ) T 2 ( 1 − T ) c i 2 \displaystyle W_i = \frac{\left( 1 - T^{2} \right)T}{2(1 - T)}c_i^{2} Wi=2(1−T)(1−T2)Tci2而平衡态分布写作: f i ( e q ) = ρ W i { 1 + c i ⋅ j ρ T + j j T 2 ( ρ T ) 2 : [ c i c i T − 4 T 2 + c i 2 ( 1 − 3 T ) 2 ( 1 − T ) I ] } \displaystyle f_i^{(eq)} = \rho W_i\left\{ 1 + \frac{\mathbf{c}_i \cdot \mathbf{j}}{\rho T} + \frac{\mathbf{j}\mathbf{j}^{T}}{2(\rho T)^{2}}:\left\lbrack \mathbf{c}_i\mathbf{c}_i^{T} - \frac{4T^{2} + c_i^{2}(1 - 3T)}{2(1 - T)}\mathbf{I} \right\rbrack \right\} fi(eq)=ρWi{1+ρTci⋅j+2(ρT)2jjT:[ciciT−2(1−T)4T2+ci2(1−3T)I]}
Frapolli等6提出了将多速LBE模型与熵LBE框架进行结合的思路.以D2Q25-ZOT模型为例, 其演化方程为:
f i ( x + c i Δ t , t + Δ t ) − f i ( x , t ) = ω 1 ( f i − f i ∗ ) + ω 2 ( f i ∗ − f i ( e q ) ) (2.5) f_i\left( \mathbf{x} + \mathbf{c}_i\Delta t,t + \Delta t \right) - f_i\left( \mathbf{x},t \right) = \omega_{1}\left( f_i - f_i^{*} \right) + \omega_{2}\left( f_i^{*} - f_i^{(eq)} \right) \tag{2.5} fi(x+ciΔt,t+Δt)−fi(x,t)=ω1(fi−fi∗)+ω2(fi∗−fi(eq))(2.5)
在不考虑ELBE的校正时, 动力粘度 μ \mu μ 和热扩散系数 κ \kappa κ 的表达式为:
μ = { ( 1 ω 1 − 1 2 ) ρ T , Pr ≤ 1 ( 1 ω 2 − 1 2 ) ρ T , Pr ≥ 1 , κ = { ( 1 ω 2 − 1 2 ) ρ T c p , Pr ≤ 1 ( 1 ω 1 − 1 2 ) ρ T c p , Pr ≥ 1 \mu = \begin{cases} \left( \frac{1}{\omega_{1}} - \frac{1}{2} \right)\rho T,& \Pr \leq 1 \\ \left( \frac{1}{\omega_{2}} - \frac{1}{2} \right)\rho T,& \Pr \geq 1 \end{cases}, \qquad \kappa = \begin{cases} \left( \frac{1}{\omega_{2}} - \frac{1}{2} \right)\rho Tc_{p},& \Pr \leq 1 \\ \left( \frac{1}{\omega_{1}} - \frac{1}{2} \right)\rho Tc_{p},& \Pr \geq 1 \end{cases} μ=⎩ ⎨ ⎧(ω11−21)ρT,(ω21−21)ρT,Pr≤1Pr≥1,κ=⎩ ⎨ ⎧(ω21−21)ρTcp,(ω11−21)ρTcp,Pr≤1Pr≥1
Frapolli等6认为, 上述计算中仅需要对涉及 μ \mu μ 的部分进行校正.当 Pr < 1 \Pr < 1 Pr<1 时, ω 1 = α β 1 , ω 2 = β 2 \omega_{1} = \alpha\beta_{1},\omega_{2} = \beta_{2} ω1=αβ1,ω2=β2 ;当 Pr > 1 \Pr > 1 Pr>1 时, ω 1 = β 1 , ω 2 = α β 2 \omega_{1} = \beta_{1},\omega_{2} = \alpha\beta_{2} ω1=β1,ω2=αβ2 . α \alpha α 仍为方程 H ( f + α ( f − f ( e q ) ) ) = H ( f ) H\left( f + \alpha\left( f - f^{(eq)} \right) \right) = H(f) H(f+α(f−f(eq)))=H(f) 的解.因此, μ \mu μ 和 κ \kappa κ 的计算变为:
μ = { 1 2 ( 1 β 1 − 1 ) ρ T , Pr ≤ 1 1 2 ( 1 β 2 − 1 ) ρ T , Pr ≥ 1 , κ = { ( 1 β 2 − 1 2 ) ρ T , Pr ≤ 1 ( 1 β 1 − 1 2 ) ρ T , Pr ≥ 1 . \mu = \left\{ \begin{matrix} \frac{1}{2}\left( \frac{1}{\beta_{1}} - 1 \right)\rho T,\qquad \Pr \leq 1 \\ \frac{1}{2}\left( \frac{1}{\beta_{2}} - 1 \right)\rho T,\qquad \Pr \geq 1 \\ \end{matrix} \right., \qquad \kappa = \left\{ \begin{matrix} \left( \frac{1}{\beta_{2}} - \frac{1}{2} \right)\rho T,\qquad \Pr \leq 1 \\ \left( \frac{1}{\beta_{1}} - \frac{1}{2} \right)\rho T,\qquad \Pr \geq 1 \\ \end{matrix} \right.\ . μ=⎩ ⎨ ⎧21(β11−1)ρT,Pr≤121(β21−1)ρT,Pr≥1,κ=⎩ ⎨ ⎧(β21−21)ρT,Pr≤1(β11−21)ρT,Pr≥1 .
[NOTE]
当 Pr = 1 \Pr = 1 Pr=1 时模型退化为LBGK方程, 这里不做讨论.
上述所介绍的基于ELBE的热流模拟能够成功还原Fourier-Navier-Stokes方程组, 实现低马赫数下各种热流的数值模拟, 但也没有实现热流和流场的耦合.此外, 由于 H H H 函数的引入, 这类方法需要额外求解 H ( f + α ( f − f ( e q ) ) ) = H ( f ) H\left( f + \alpha\left( f - f^{(eq)} \right) \right) = H(f) H(f+α(f−f(eq)))=H(f) , 在数值计算上导致一定不便.
Qian, Y.H (1993). Simulating thermohydrodynamics with lattice BGK models. Journal of Scientific Computing, 8, 231–242. DOI:10.1007/BF01060932 ↩︎
Alexander, F., Chen, S., & Sterling, J. (1993). Lattice Boltzmann thermohydrodynamics. Physical Review E, 47, R2249–R2252. DOI:10.1103/PhysRevE.47.R2249 ↩︎
Chen, Y., Ohashi, H., & Akiyama, M. (1994). Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E, 50, 2776–2783. DOI: 10.1103/PhysRevE.50.2776 ↩︎ ↩︎ ↩︎
Chen, Y., Ohashi, H., & Akiyama, M. (1997). Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number. Journal of Scientific Computing, 12(2), 169–185. DOI:10.1023/A:1025621832215 ↩︎ ↩︎ ↩︎
Nikolaos I. Prasianakis, & Konstantinos Boulouchos (2007). Lattice Boltzmann Method For Simulation Of Weakly Compressible Flows At Arbitrary Prandtl Number. International Journal of Modern Physics C, 18, 602-609. DOI:10.1142/S012918310701084X ↩︎ ↩︎ ↩︎ ↩︎
Frapolli, N., Chikatamarla, S., & Karlin, I. (2014). Multispeed entropic lattice Boltzmann model for thermal flows. Physical Review E, 90, 043306. DOI:10.1103/PhysRevE.90.043306 ↩︎ ↩︎ ↩︎
N.I. Prasianakis, S.S. Chikatamarla, I.V. Karlin, S. Ansumali, & K. Boulouchos (2006). Entropic lattice Boltzmann method for simulation of thermal flows. Mathematics and Computers in Simulation, 72(2), 179-183. DOI:10.1016/j.matcom.2006.05.012 ↩︎ ↩︎
杨鲲 & 单肖文. (2020). 多层速度格子Boltzmann方法进展及展望. 空气动力学学报, 40(3), 23–45. DOI:10.7638/kqdlxxb-2021.0348 ↩︎
Kataoka, T., & Tsutahara, M. (2004). Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio. Physical Review E, 69, 035701. DOI:10.1103/PhysRevE.69.035701 ↩︎
Gan, Y.-B., Xu, A.-G., Zhang, G.-C., & Li, Y.-J. (2011). Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number. Communications in Theoretical Physics, 56(3), 490–498. DOI:10.1088/0253-6102/56/3/18 ↩︎
Hosseini, S. A., Atif, M., Ansumali, S., & Karlin, I. V. (2023). Entropic lattice Boltzmann methods: A review. Computers & Fluids, 259, 105884. DOI:10.1016/j.compfluid.2023.105884 ↩︎
Anirudh Jonnalagadda; Atul Sharma; Amit Agrawal (2021). Single relaxation time entropic lattice Boltzmann methods: A developer’s perspective for stable and accurate simulations. Computers & Fluids, 215, 104792. DOI:10.1016/j.compfluid.2020.104792 ↩︎
Yong, Wen-an., Luo, Li-Shi (2005). Nonexistence of H Theorem for Some Lattice Boltzmann Models. Journal of Statistical Physics, 121, 91–103. DOI:10.1007/s10955-005-5958-9 ↩︎
1080

被折叠的 条评论
为什么被折叠?



