此题系中科大2016年分析与代数科目的考研题,由一位爱喝蓝胖子的网友向我提问…个人试解如下
P
r
o
b
l
e
m
Problem
Problem
设
∑
n
=
1
∞
a
n
\displaystyle\sum_{n=1}^{\infty}a_{n}
n=1∑∞an为正项级数,如果存在
α
\alpha
α和
β
>
0
,
\beta>0,
β>0,使得
a
n
−
a
n
+
1
≥
β
a
n
2
−
α
a_{n}-a_{n+1}\geq \beta a_{n}^{2-\alpha}
an−an+1≥βan2−α,证明:
(
1
)
.
a
n
(1).a_n
(1).an单调递减趋于
0
0
0,且
α
≤
1
\alpha\leq 1
α≤1.
(
2
)
.
∑
n
=
1
∞
a
n
<
+
∞
(2).\displaystyle\sum_{n=1}^{\infty}a_{n}<+\infty
(2).n=1∑∞an<+∞,且
∑
n
=
N
∞
a
n
=
O
(
a
N
α
)
,
N
→
∞
\displaystyle\sum_{n=N}^{\infty}a_{n}=O(a_{N}^{\alpha}),N\to\infty
n=N∑∞an=O(aNα),N→∞.
P
r
o
o
f
Proof
Proof:
(1)
首先容易判断出
l
i
m
n
→
∞
a
n
=
a
>
0
\underset{n\to\infty}{lim}a_n=a>0
n→∞liman=a>0存在且
a
n
a_n
an严格单调递减
(
i
)
(i)
(i)若
α
≥
2
\alpha\geq 2
α≥2,则
a
n
2
−
α
≥
a
1
2
−
α
a_{n}^{2-\alpha}\geq a_{1}^{2-\alpha}
an2−α≥a12−α(
∀
n
∈
z
+
\forall n\in \mathbb{z}^+
∀n∈z+)
从而
a
1
=
∑
n
=
1
∞
(
a
n
−
a
n
+
1
)
+
a
a_1=\sum_{n=1}^{\infty}(a_n-a_{n+1})+a
a1=∑n=1∞(an−an+1)+a
≥
n
β
a
1
2
−
α
+
a
→
+
∞
(
n
→
+
∞
)
\geq n\beta a_1^{2-\alpha}+a\to +\infty(n\to +\infty)
≥nβa12−α+a→+∞(n→+∞)
(
i
i
)
(ii)
(ii)若
1
<
α
<
2
1<\alpha<2
1<α<2,则
\qquad
a
n
−
a
n
+
1
a
n
2
−
α
≥
β
\frac{a_{n}-a_{n+1}}{a_{n}^{2-\alpha}}\geq \beta
an2−αan−an+1≥β
⇒
∫
a
n
+
1
a
n
1
x
2
−
α
d
x
≥
β
\Rightarrow \int_{a_{n+1}}^{a_{n}}\frac{1}{x^{2-\alpha}}dx\geq \beta
⇒∫an+1anx2−α1dx≥β
(
∀
n
∈
Z
+
)
(\forall n\in \mathbb{Z}^+)
(∀n∈Z+)
\qquad\qquad\qquad\quad
⇒
∫
a
n
+
1
a
1
1
x
2
−
α
d
x
≥
n
β
\Rightarrow \int_{a_{n+1}}^{a_{1}}\frac{1}{x^{2-\alpha}}dx\geq n\beta
⇒∫an+1a1x2−α1dx≥nβ
→
+
∞
(
n
→
+
∞
)
\to +\infty(n\to +\infty)
→+∞(n→+∞)
综上知
0
<
α
≤
1
0<\alpha\leq 1
0<α≤1.此时
0
≤
lim
n
→
∞
β
a
n
2
−
α
≤
lim
n
→
∞
(
a
n
−
a
n
+
1
)
=
0
0\le \underset{n\rightarrow \infty}{\lim}\beta a_{n}^{2-\alpha}\le \underset{n\rightarrow \infty}{\lim}\left( a_n-a_{n+1} \right) =0
0≤n→∞limβan2−α≤n→∞lim(an−an+1)=0
(
2
)
(2)
(2)
由
(
1
)
(1)
(1)知
a
n
−
a
n
+
1
a
n
1
−
α
≥
β
a
n
\frac{a_n-a_{n+1}}{a_n^{1-\alpha}}\geq \beta a_n
an1−αan−an+1≥βan
⇒
\Rightarrow
⇒
∫
a
n
+
1
a
n
1
x
1
−
α
d
x
≥
β
a
n
\int_{a_{n+1}}^{a_{n}}\frac{1}{x^{1-\alpha}}dx\geq \beta a_{n}
∫an+1anx1−α1dx≥βan
(
∀
n
∈
Z
+
)
(
∗
)
(\forall n\in \mathbb{Z}^+)\qquad (*)
(∀n∈Z+)(∗)
\qquad\qquad\qquad\qquad\quad
⇒
\Rightarrow
⇒
∫
a
n
+
1
a
1
1
x
1
−
α
d
x
≥
β
∑
k
=
1
n
a
n
\int_{a_{n+1}}^{a_1}{\frac{1}{x^{1-\alpha}}}dx\ge \beta \displaystyle\sum_{k=1}^n{a_n}
∫an+1a1x1−α1dx≥βk=1∑nan
令
n
→
∞
n\to\infty
n→∞,即知
∑
a
n
<
+
∞
\sum a_n < +\infty
∑an<+∞
当
α
=
1
\alpha=1
α=1时,
a
n
−
a
n
+
1
≥
β
a
n
(
n
≥
N
)
a_{n}-a_{n+1}\geq \beta a_{n}\qquad (n\geq N)
an−an+1≥βan(n≥N)
故
a
N
=
∑
n
=
N
+
∞
(
a
n
−
a
n
+
1
)
≥
β
∑
n
=
N
∞
a
n
a_{N}=\displaystyle\sum_{n=N}^{+\infty}(a_n-a_{n+1})\geq \beta\sum_{n=N}^{\infty}a_{n}
aN=n=N∑+∞(an−an+1)≥βn=N∑∞an
即
∑
n
=
N
∞
a
n
=
O
(
a
N
)
\displaystyle\sum_{n=N}^{\infty}a_{n}=O(a_{N})
n=N∑∞an=O(aN)
当
α
≠
1
\alpha\ne1
α̸=1时,注意
(
∗
)
(*)
(∗)式,有
1
α
a
N
α
=
∫
0
a
N
1
x
1
−
α
d
x
≥
β
∑
n
=
N
∞
a
n
\frac{1}{\alpha}a_{N}^{\alpha}=\int_{0}^{a_{N}}\frac{1}{x^{1-\alpha}}dx\geq \beta\sum_{n=N}^{\infty}a_{n}
α1aNα=∫0aNx1−α1dx≥βn=N∑∞an即
∑
n
=
N
∞
a
n
=
O
(
a
N
α
)
\displaystyle\sum_{n=N}^{\infty}a_{n}=O(a^{\alpha}_{N})
n=N∑∞an=O(aNα)