一道基于积分估计的级数题的试解

此题系中科大2016年分析与代数科目的考研题,由一位爱喝蓝胖子的网友向我提问…个人试解如下
P r o b l e m Problem Problem
∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{\infty}a_{n} n=1an为正项级数,如果存在 α \alpha α β > 0 , \beta>0, β>0,使得 a n − a n + 1 ≥ β a n 2 − α a_{n}-a_{n+1}\geq \beta a_{n}^{2-\alpha} anan+1βan2α,证明:
( 1 ) . a n (1).a_n (1).an单调递减趋于 0 0 0,且 α ≤ 1 \alpha\leq 1 α1.
( 2 ) . ∑ n = 1 ∞ a n &lt; + ∞ (2).\displaystyle\sum_{n=1}^{\infty}a_{n}&lt;+\infty (2).n=1an<+,且 ∑ n = N ∞ a n = O ( a N α ) , N → ∞ \displaystyle\sum_{n=N}^{\infty}a_{n}=O(a_{N}^{\alpha}),N\to\infty n=Nan=O(aNα),N.
P r o o f Proof Proof
(1)
首先容易判断出 l i m n → ∞ a n = a &gt; 0 \underset{n\to\infty}{lim}a_n=a&gt;0 nliman=a>0存在且 a n a_n an严格单调递减

( i ) (i) (i) α ≥ 2 \alpha\geq 2 α2,则 a n 2 − α ≥ a 1 2 − α a_{n}^{2-\alpha}\geq a_{1}^{2-\alpha} an2αa12α( ∀ n ∈ z + \forall n\in \mathbb{z}^+ nz+)
从而 a 1 = ∑ n = 1 ∞ ( a n − a n + 1 ) + a a_1=\sum_{n=1}^{\infty}(a_n-a_{n+1})+a a1=n=1(anan+1)+a ≥ n β a 1 2 − α + a → + ∞ ( n → + ∞ ) \geq n\beta a_1^{2-\alpha}+a\to +\infty(n\to +\infty) nβa12α+a+(n+)

( i i ) (ii) (ii) 1 &lt; α &lt; 2 1&lt;\alpha&lt;2 1<α<2,则
\qquad a n − a n + 1 a n 2 − α ≥ β \frac{a_{n}-a_{n+1}}{a_{n}^{2-\alpha}}\geq \beta an2αanan+1β ⇒ ∫ a n + 1 a n 1 x 2 − α d x ≥ β \Rightarrow \int_{a_{n+1}}^{a_{n}}\frac{1}{x^{2-\alpha}}dx\geq \beta an+1anx2α1dxβ ( ∀ n ∈ Z + ) (\forall n\in \mathbb{Z}^+) (nZ+)
\qquad\qquad\qquad\quad ⇒ ∫ a n + 1 a 1 1 x 2 − α d x ≥ n β \Rightarrow \int_{a_{n+1}}^{a_{1}}\frac{1}{x^{2-\alpha}}dx\geq n\beta an+1a1x2α1dxnβ → + ∞ ( n → + ∞ ) \to +\infty(n\to +\infty) +(n+)

综上知 0 &lt; α ≤ 1 0&lt;\alpha\leq 1 0<α1.此时
0 ≤ lim ⁡ n → ∞ β a n 2 − α ≤ lim ⁡ n → ∞ ( a n − a n + 1 ) = 0 0\le \underset{n\rightarrow \infty}{\lim}\beta a_{n}^{2-\alpha}\le \underset{n\rightarrow \infty}{\lim}\left( a_n-a_{n+1} \right) =0 0nlimβan2αnlim(anan+1)=0

( 2 ) (2) (2)
( 1 ) (1) (1) a n − a n + 1 a n 1 − α ≥ β a n \frac{a_n-a_{n+1}}{a_n^{1-\alpha}}\geq \beta a_n an1αanan+1βan ⇒ \Rightarrow ∫ a n + 1 a n 1 x 1 − α d x ≥ β a n \int_{a_{n+1}}^{a_{n}}\frac{1}{x^{1-\alpha}}dx\geq \beta a_{n} an+1anx1α1dxβan ( ∀ n ∈ Z + ) ( ∗ ) (\forall n\in \mathbb{Z}^+)\qquad (*) (nZ+)()
\qquad\qquad\qquad\qquad\quad ⇒ \Rightarrow ∫ a n + 1 a 1 1 x 1 − α d x ≥ β ∑ k = 1 n a n \int_{a_{n+1}}^{a_1}{\frac{1}{x^{1-\alpha}}}dx\ge \beta \displaystyle\sum_{k=1}^n{a_n} an+1a1x1α1dxβk=1nan
n → ∞ n\to\infty n,即知 ∑ a n &lt; + ∞ \sum a_n &lt; +\infty an<+
α = 1 \alpha=1 α=1时, a n − a n + 1 ≥ β a n ( n ≥ N ) a_{n}-a_{n+1}\geq \beta a_{n}\qquad (n\geq N) anan+1βan(nN)
a N = ∑ n = N + ∞ ( a n − a n + 1 ) ≥ β ∑ n = N ∞ a n a_{N}=\displaystyle\sum_{n=N}^{+\infty}(a_n-a_{n+1})\geq \beta\sum_{n=N}^{\infty}a_{n} aN=n=N+(anan+1)βn=Nan
∑ n = N ∞ a n = O ( a N ) \displaystyle\sum_{n=N}^{\infty}a_{n}=O(a_{N}) n=Nan=O(aN)
α ≠ 1 \alpha\ne1 α̸=1时,注意 ( ∗ ) (*) ()式,有
1 α a N α = ∫ 0 a N 1 x 1 − α d x ≥ β ∑ n = N ∞ a n \frac{1}{\alpha}a_{N}^{\alpha}=\int_{0}^{a_{N}}\frac{1}{x^{1-\alpha}}dx\geq \beta\sum_{n=N}^{\infty}a_{n} α1aNα=0aNx1α1dxβn=Nan ∑ n = N ∞ a n = O ( a N α ) \displaystyle\sum_{n=N}^{\infty}a_{n}=O(a^{\alpha}_{N}) n=Nan=O(aNα)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值