有关矩阵级数的一道高代考研题试解

此题系中山大学2017年高代考研题,由网友水清浅向我提问…个人试解如下
P r o b l e m Problem Problem:
设 A 是 一 个 n 阶 实 矩 阵 , 其 有 n 个 绝 对 值 小 于 1 的 实 特 征 值 , 证 明 : 设A是一个n阶实矩阵,其有n个绝对值小于1的实特征值,证明: An,n1,:
l n ( d e t ( I − A ) = − ∑ k = 1 ∞ 1 k t r ( A k ) ln(det(I-A)=-\sum_{k=1}^{\infty}\frac{1}{k}tr(A^k) ln(det(IA)=k=1k1tr(Ak)
P r o o f Proof Proof:
\qquad\quad 首 先 证 明 如 下 引 理 首先证明如下引理 :
\qquad\quad 任 意 n 阶 方 阵 A 必 相 似 于 上 三 角 阵 T , 其 主 对 角 线 元 素 是 A 的 n 个 特 征 任意n阶方阵A必相似于上三角阵T,其主对角线元素是A的n个特征 nAT,线An
\qquad\quad 值 : 值: : λ 1 , ⋯   , λ n \lambda _1,\cdots ,\lambda _n λ1,,λn, 即 存 在 n 阶 可 逆 方 阵 P 使 得 即存在n阶可逆方阵P使得 nP使
P − 1 A P = ( λ 1 ∗ ∗ ∗ 0 λ 2 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) P^{-1}AP=\left( \begin{matrix} \lambda _1& *& *& *\\ 0& \lambda _2& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& 0& \cdots& \lambda _n\\ \end{matrix} \right) P1AP=λ100λ20λn
\qquad\quad 证 明 如 下 : 证明如下: :
\qquad\quad 只 需 要 证 明 对 于 任 意 n 阶 方 阵 A , 存 在 n 阶 可 逆 方 阵 P 和 n 只需要证明对于任意n阶方阵A,存在n阶可逆方阵P和n nA,nPn 阶 上 三 角 方 阶上三角方 \quad 阵 T , 使 得 A = P − 1 T P . 阵T,使得A=P^{-1}TP. T,使A=P1TP. 采 用 数 学 归 纳 法 . 采用数学归纳法. .
1 0 1^0 10, 当 n = 1 时 , 结 论 显 然 成 立 . 当n=1时,结论显然成立. n=1,.
2 0 2^0 20, 设 对 于 n − 1 阶 方 阵 结 论 成 立 , 设对于n-1阶方阵结论成立, n1, A 是 任 一 n 阶 方 阵 , 设 v 是 A 的 一 个 特 征 向 量 A是任一n阶方阵,设v是A的一个特征向量 An,vA, v ≠ 0 v\ne0 v̸=0, A v = λ v . Av=\lambda v. Av=λv. 取 R n 取\mathbb{R}^n Rn 的 一 组 基 , 以 v 为 第 一 个 基 向 量 的一组基,以v为第一个基向量 ,v, 于 是 有 于是有
S − 1 A S = ( λ ∗ ⋯ ∗ 0 ⋮ A 0 0 ) S^{-1}AS=\left( \begin{matrix} \lambda& *& \cdots& *\\ 0& & & \\ \vdots& & A_0& \\ 0& & & \\ \end{matrix} \right) S1AS=λ00A0
其 中 S 是 某 个 n 阶 可 逆 方 阵 . 依 归 纳 假 设 , 对 于 n − 1 阶 方 阵 A 0 其中S是某个n阶可逆方阵.依归纳假设,对于n-1阶方阵A_0 Sn.,n1A0, 存 在 某 个 存在某个 n − 1 n-1 n1 阶 可 逆 方 阵 S 0 使 得 S 0 − 1 A 0 S 0 = T 0 阶可逆方阵S_0使得S_0^{-1}A_0S_0=T_0 S0使S01A0S0=T0. 令 令
S 1 = ( 1 0 ⋯ 0 0 ⋮ S 0 0 ) S_1=\left( \begin{matrix} 1& 0& \cdots& 0\\ 0& & & \\ \vdots& & S_0& \\ 0& & & \\ \end{matrix} \right) S1=1000S00
因 而 因而
S 1 − 1 = ( 1 0 ⋯ 0 0 ⋮ S 0 − 1 0 ) S_{1}^{-1}=\left( \begin{matrix} 1& 0& \cdots& 0\\ 0& & & \\ \vdots& & S_{0}^{-1}& \\ 0& & & \\ \end{matrix} \right) S11=1000S010
故 故
S 1 − 1 ( S − 1 A S ) S 1 = S 1 − 1 ( λ ∗ ⋯ ∗ 0 ⋮ A 0 0 ) S 1                 = ( λ ∗ ⋯ ∗ 0 ⋮ T 0 0 ) S_{1}^{-1}\left( S^{-1}AS \right) S_1=S_{1}^{-1}\left( \begin{matrix} \lambda& *& \cdots& *\\ 0& & & \\ \vdots& & A_0& \\ 0& & & \\ \end{matrix} \right) S_1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left( \begin{matrix} \lambda& *& \cdots& *\\ 0& & & \\ \vdots& & T_0& \\ 0& & & \\ \end{matrix} \right) S11(S1AS)S1=S11λ00A0S1               =λ00T0
\qquad\quad 证 明 完 毕 . 证明完毕. .

\qquad\quad 下 面 证 明 本 题 : 下面证明本题: :
      考 虑 T = ( λ 1 ∗ ⋯ ∗ 0 λ 2 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 ⋯ ⋯ λ n )     则 T k = ( λ 1 k ∗ ⋯ ∗ 0 λ 2 k ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 ⋯ ⋯ λ n k )   从 而 ∑ k = 0 ∞ T k k ! = ( e λ 1 ∗ ⋯ ∗ 0 e λ 2 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 ⋯ ⋯ e λ n ) det ⁡ ( ∑ k = 0 ∞ T k k ! ) = e λ 1 + λ 2 + ⋯ λ n     det ⁡ ( e T ) = e t r ( T ) \ \ \ \ \ 考虑 T=\left( \begin{matrix} \lambda _1& *& \cdots& *\\ 0& \lambda _2& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& \cdots& \cdots& \lambda _n\\ \end{matrix} \right) \\ \ \ \ 则T^k=\left( \begin{matrix} \lambda _{1}^{k}& *& \cdots& *\\ 0& \lambda _{2}^{k}& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& \cdots& \cdots& \lambda _{n}^{k}\\ \end{matrix} \right) \ \\ 从而\sum_{k=0}^{\infty}{\frac{T^k}{k!}}=\left( \begin{matrix} e^{\lambda _1}& *& \cdots& *\\ 0& e^{\lambda _2}& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& \cdots& \cdots& e^{\lambda _n}\\ \end{matrix} \right) \\ \det \left( \sum_{k=0}^{\infty}{\frac{T^k}{k!}} \right) =e^{\lambda _1+\lambda _2+\cdots \lambda _n} \\ \ \ \ \det \left( e^T \right) =e^{tr\left( T \right)}      T=λ100λ2λn   Tk=λ1k00λ2kλnk k=0k!Tk=eλ100eλ2eλndet(k=0k!Tk)=eλ1+λ2+λn   det(eT)=etr(T)
\qquad\quad 由 引 理 及 上 述 讨 论 知 由引理及上述讨论知
e A = e P − 1 T P = ∑ k = 0 ∞ ( P − 1 T P ) k k ! = P − 1 e T P e^A=e^{P^{-1}TP}=\sum_{k=0}^{\infty}\frac{(P^{-1}TP)^k}{k!}=P^{-1}e^TP eA=eP1TP=k=0k!(P1TP)k=P1eTP \qquad\quad 因 而 因而
d e t ( e A ) = d e t ( P − 1 e T P ) = d e t ( e T ) = e t r ( T ) = e t r ( A ) det(e^A)=det(P^{-1}e^TP)=det(e^T)=e^{tr(T)}=e^{tr(A)} det(eA)=det(P1eTP)=det(eT)=etr(T)=etr(A) \qquad\quad 故 故
d e t ( I − A ) = d e t ( e l n ( I − A ) ) = d e t ( exp ⁡ ( − ∑ k = 1 ∞ A k k ) )                                        = ∏ k = 1 ∞ det ⁡ ( − exp ⁡ ( A k k ) )                              = ∏ k = 1 ∞ exp ⁡ ( − t r A k k )                              = exp ⁡ ( ∑ − t r A k k ) det\left( I-A \right) =det\left( e^{ln\left( I-A \right)} \right) =det\left( \exp \left( -\sum_{k=1}^{\infty}{\frac{A^k}{k}} \right) \right) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\prod_{k=1}^{\infty}{\det \left( -\exp \left( \frac{A^k}{k} \right) \right)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\prod_{k=1}^{\infty}{\exp \left( -tr\frac{A^k}{k} \right)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\exp \left( \sum{-\frac{trA^k}{k}} \right) det(IA)=det(eln(IA))=det(exp(k=1kAk))                                      =k=1det(exp(kAk))                            =k=1exp(trkAk)                            =exp(ktrAk)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值