此题系中山大学2017年高代考研题,由网友水清浅向我提问…个人试解如下
P
r
o
b
l
e
m
Problem
Problem:
设
A
是
一
个
n
阶
实
矩
阵
,
其
有
n
个
绝
对
值
小
于
1
的
实
特
征
值
,
证
明
:
设A是一个n阶实矩阵,其有n个绝对值小于1的实特征值,证明:
设A是一个n阶实矩阵,其有n个绝对值小于1的实特征值,证明:
l
n
(
d
e
t
(
I
−
A
)
=
−
∑
k
=
1
∞
1
k
t
r
(
A
k
)
ln(det(I-A)=-\sum_{k=1}^{\infty}\frac{1}{k}tr(A^k)
ln(det(I−A)=−k=1∑∞k1tr(Ak)
P
r
o
o
f
Proof
Proof:
\qquad\quad
首
先
证
明
如
下
引
理
首先证明如下引理
首先证明如下引理:
\qquad\quad
任
意
n
阶
方
阵
A
必
相
似
于
上
三
角
阵
T
,
其
主
对
角
线
元
素
是
A
的
n
个
特
征
任意n阶方阵A必相似于上三角阵T,其主对角线元素是A的n个特征
任意n阶方阵A必相似于上三角阵T,其主对角线元素是A的n个特征
\qquad\quad
值
:
值:
值:
λ
1
,
⋯
 
,
λ
n
\lambda _1,\cdots ,\lambda _n
λ1,⋯,λn,
即
存
在
n
阶
可
逆
方
阵
P
使
得
即存在n阶可逆方阵P使得
即存在n阶可逆方阵P使得
P
−
1
A
P
=
(
λ
1
∗
∗
∗
0
λ
2
⋯
∗
⋮
⋮
⋱
⋮
0
0
⋯
λ
n
)
P^{-1}AP=\left( \begin{matrix} \lambda _1& *& *& *\\ 0& \lambda _2& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& 0& \cdots& \lambda _n\\ \end{matrix} \right)
P−1AP=⎝⎜⎜⎜⎛λ10⋮0∗λ2⋮0∗⋯⋱⋯∗∗⋮λn⎠⎟⎟⎟⎞
\qquad\quad
证
明
如
下
:
证明如下:
证明如下:
\qquad\quad
只
需
要
证
明
对
于
任
意
n
阶
方
阵
A
,
存
在
n
阶
可
逆
方
阵
P
和
n
只需要证明对于任意n阶方阵A,存在n阶可逆方阵P和n
只需要证明对于任意n阶方阵A,存在n阶可逆方阵P和n
阶
上
三
角
方
阶上三角方
阶上三角方
\quad
阵
T
,
使
得
A
=
P
−
1
T
P
.
阵T,使得A=P^{-1}TP.
阵T,使得A=P−1TP.
采
用
数
学
归
纳
法
.
采用数学归纳法.
采用数学归纳法.
1
0
1^0
10,
当
n
=
1
时
,
结
论
显
然
成
立
.
当n=1时,结论显然成立.
当n=1时,结论显然成立.
2
0
2^0
20,
设
对
于
n
−
1
阶
方
阵
结
论
成
立
,
设对于n-1阶方阵结论成立,
设对于n−1阶方阵结论成立,
A
是
任
一
n
阶
方
阵
,
设
v
是
A
的
一
个
特
征
向
量
A是任一n阶方阵,设v是A的一个特征向量
A是任一n阶方阵,设v是A的一个特征向量,
v
≠
0
v\ne0
v̸=0,
A
v
=
λ
v
.
Av=\lambda v.
Av=λv.
取
R
n
取\mathbb{R}^n
取Rn
的
一
组
基
,
以
v
为
第
一
个
基
向
量
的一组基,以v为第一个基向量
的一组基,以v为第一个基向量,
于
是
有
于是有
于是有
S
−
1
A
S
=
(
λ
∗
⋯
∗
0
⋮
A
0
0
)
S^{-1}AS=\left( \begin{matrix} \lambda& *& \cdots& *\\ 0& & & \\ \vdots& & A_0& \\ 0& & & \\ \end{matrix} \right)
S−1AS=⎝⎜⎜⎜⎛λ0⋮0∗⋯A0∗⎠⎟⎟⎟⎞
其
中
S
是
某
个
n
阶
可
逆
方
阵
.
依
归
纳
假
设
,
对
于
n
−
1
阶
方
阵
A
0
其中S是某个n阶可逆方阵.依归纳假设,对于n-1阶方阵A_0
其中S是某个n阶可逆方阵.依归纳假设,对于n−1阶方阵A0,
存
在
某
个
存在某个
存在某个
n
−
1
n-1
n−1
阶
可
逆
方
阵
S
0
使
得
S
0
−
1
A
0
S
0
=
T
0
阶可逆方阵S_0使得S_0^{-1}A_0S_0=T_0
阶可逆方阵S0使得S0−1A0S0=T0.
令
令
令
S
1
=
(
1
0
⋯
0
0
⋮
S
0
0
)
S_1=\left( \begin{matrix} 1& 0& \cdots& 0\\ 0& & & \\ \vdots& & S_0& \\ 0& & & \\ \end{matrix} \right)
S1=⎝⎜⎜⎜⎛10⋮00⋯S00⎠⎟⎟⎟⎞
因
而
因而
因而
S
1
−
1
=
(
1
0
⋯
0
0
⋮
S
0
−
1
0
)
S_{1}^{-1}=\left( \begin{matrix} 1& 0& \cdots& 0\\ 0& & & \\ \vdots& & S_{0}^{-1}& \\ 0& & & \\ \end{matrix} \right)
S1−1=⎝⎜⎜⎜⎛10⋮00⋯S0−10⎠⎟⎟⎟⎞
故
故
故
S
1
−
1
(
S
−
1
A
S
)
S
1
=
S
1
−
1
(
λ
∗
⋯
∗
0
⋮
A
0
0
)
S
1
=
(
λ
∗
⋯
∗
0
⋮
T
0
0
)
S_{1}^{-1}\left( S^{-1}AS \right) S_1=S_{1}^{-1}\left( \begin{matrix} \lambda& *& \cdots& *\\ 0& & & \\ \vdots& & A_0& \\ 0& & & \\ \end{matrix} \right) S_1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left( \begin{matrix} \lambda& *& \cdots& *\\ 0& & & \\ \vdots& & T_0& \\ 0& & & \\ \end{matrix} \right)
S1−1(S−1AS)S1=S1−1⎝⎜⎜⎜⎛λ0⋮0∗⋯A0∗⎠⎟⎟⎟⎞S1 =⎝⎜⎜⎜⎛λ0⋮0∗⋯T0∗⎠⎟⎟⎟⎞
\qquad\quad
证
明
完
毕
.
证明完毕.
证明完毕.
\qquad\quad
下
面
证
明
本
题
:
下面证明本题:
下面证明本题:
考
虑
T
=
(
λ
1
∗
⋯
∗
0
λ
2
⋯
∗
⋮
⋮
⋱
⋮
0
⋯
⋯
λ
n
)
则
T
k
=
(
λ
1
k
∗
⋯
∗
0
λ
2
k
⋯
∗
⋮
⋮
⋱
⋮
0
⋯
⋯
λ
n
k
)
从
而
∑
k
=
0
∞
T
k
k
!
=
(
e
λ
1
∗
⋯
∗
0
e
λ
2
⋯
∗
⋮
⋮
⋱
⋮
0
⋯
⋯
e
λ
n
)
det
(
∑
k
=
0
∞
T
k
k
!
)
=
e
λ
1
+
λ
2
+
⋯
λ
n
det
(
e
T
)
=
e
t
r
(
T
)
\ \ \ \ \ 考虑 T=\left( \begin{matrix} \lambda _1& *& \cdots& *\\ 0& \lambda _2& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& \cdots& \cdots& \lambda _n\\ \end{matrix} \right) \\ \ \ \ 则T^k=\left( \begin{matrix} \lambda _{1}^{k}& *& \cdots& *\\ 0& \lambda _{2}^{k}& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& \cdots& \cdots& \lambda _{n}^{k}\\ \end{matrix} \right) \ \\ 从而\sum_{k=0}^{\infty}{\frac{T^k}{k!}}=\left( \begin{matrix} e^{\lambda _1}& *& \cdots& *\\ 0& e^{\lambda _2}& \cdots& *\\ \vdots& \vdots& \ddots& \vdots\\ 0& \cdots& \cdots& e^{\lambda _n}\\ \end{matrix} \right) \\ \det \left( \sum_{k=0}^{\infty}{\frac{T^k}{k!}} \right) =e^{\lambda _1+\lambda _2+\cdots \lambda _n} \\ \ \ \ \det \left( e^T \right) =e^{tr\left( T \right)}
考虑T=⎝⎜⎜⎜⎛λ10⋮0∗λ2⋮⋯⋯⋯⋱⋯∗∗⋮λn⎠⎟⎟⎟⎞ 则Tk=⎝⎜⎜⎜⎛λ1k0⋮0∗λ2k⋮⋯⋯⋯⋱⋯∗∗⋮λnk⎠⎟⎟⎟⎞ 从而k=0∑∞k!Tk=⎝⎜⎜⎜⎛eλ10⋮0∗eλ2⋮⋯⋯⋯⋱⋯∗∗⋮eλn⎠⎟⎟⎟⎞det(k=0∑∞k!Tk)=eλ1+λ2+⋯λn det(eT)=etr(T)
\qquad\quad
由
引
理
及
上
述
讨
论
知
由引理及上述讨论知
由引理及上述讨论知
e
A
=
e
P
−
1
T
P
=
∑
k
=
0
∞
(
P
−
1
T
P
)
k
k
!
=
P
−
1
e
T
P
e^A=e^{P^{-1}TP}=\sum_{k=0}^{\infty}\frac{(P^{-1}TP)^k}{k!}=P^{-1}e^TP
eA=eP−1TP=k=0∑∞k!(P−1TP)k=P−1eTP
\qquad\quad
因
而
因而
因而
d
e
t
(
e
A
)
=
d
e
t
(
P
−
1
e
T
P
)
=
d
e
t
(
e
T
)
=
e
t
r
(
T
)
=
e
t
r
(
A
)
det(e^A)=det(P^{-1}e^TP)=det(e^T)=e^{tr(T)}=e^{tr(A)}
det(eA)=det(P−1eTP)=det(eT)=etr(T)=etr(A)
\qquad\quad
故
故
故
d
e
t
(
I
−
A
)
=
d
e
t
(
e
l
n
(
I
−
A
)
)
=
d
e
t
(
exp
(
−
∑
k
=
1
∞
A
k
k
)
)
=
∏
k
=
1
∞
det
(
−
exp
(
A
k
k
)
)
=
∏
k
=
1
∞
exp
(
−
t
r
A
k
k
)
=
exp
(
∑
−
t
r
A
k
k
)
det\left( I-A \right) =det\left( e^{ln\left( I-A \right)} \right) =det\left( \exp \left( -\sum_{k=1}^{\infty}{\frac{A^k}{k}} \right) \right) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\prod_{k=1}^{\infty}{\det \left( -\exp \left( \frac{A^k}{k} \right) \right)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\prod_{k=1}^{\infty}{\exp \left( -tr\frac{A^k}{k} \right)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\exp \left( \sum{-\frac{trA^k}{k}} \right)
det(I−A)=det(eln(I−A))=det(exp(−k=1∑∞kAk)) =k=1∏∞det(−exp(kAk)) =k=1∏∞exp(−trkAk) =exp(∑−ktrAk)