裴礼文3.2.34解答

( S c h w a r z Schwarz Schwarz定理)若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]连续, f ( x ) f(x) f(x)的广义二阶导数 f [ 2 ] ( x ) = l i m h → 0 + f ( x + 2 h ) − 2 f ( x ) + f ( x − 2 h ) 4 h 2 f^{[2]} (x)=\underset{h\to 0^+}{lim}\frac{f(x+2h)-2f(x)+f(x-2h)}{4h^2} f[2](x)=h0+lim4h2f(x+2h)2f(x)+f(x2h)存在且恒为零,证明: f ( x ) f(x) f(x)是线性函数.
证 \textbf{证}
有一个有趣的事实是如果一个函数既是凹函数也是凸函数,则它是线性函数.我们证明一下这一点:
假设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上既凸也凹的函数,则 ∀ x ∈ [ a , b ] \forall x\in[a,b] x[a,b], ∃ t ∈ [ 0 , 1 ] \exists t\in[0,1] t[0,1],使得 x = t a + ( 1 − t ) b x=ta+(1-t)b x=ta+(1t)b此时有 f ( x ) = t f ( a ) + ( 1 − t ) f ( b ) = [ f ( a ) − f ( b ) ] t + f ( b ) = f ( a ) − f ( b ) a − b ( x − b ) + f ( b ) f(x)=tf(a)+(1-t)f(b) =[f(a)-f(b)]t+f(b)=\frac{f(a)-f(b)}{a-b}(x-b)+f(b) f(x)=tf(a)+(1t)f(b)=[f(a)f(b)]t+f(b)=abf(a)f(b)(xb)+f(b)因此,我们只需要证明 f ( x ) f(x) f(x)既凸也凹就好了.
首先,记 F ( x ) = f ( x ) + ε x 2 F(x)=f(x)+\varepsilon x^2 F(x)=f(x)+εx2,于是 F [ 2 ] ( x ) = f [ 2 ] ( x ) + 2 ε = 2 ε > 0 F^{[2]}(x)=f^{[2]}(x)+2\varepsilon=2\varepsilon>0 F[2](x)=f[2](x)+2ε=2ε>0我们证明 F ( x ) F(x) F(x)是凸函数,假设不然.则 ∃ x 1 < x 2 < x 3 \exists x_1<x_2<x_3 x1<x2<x3,使得下式成立 F ( x 2 ) − F ( x 1 ) x 2 − x 1 > F ( x 3 ) − F ( x 2 ) x 3 − x 2 \frac{F(x_2)-F(x_1)}{x_2-x_1}>\frac{F(x_3)-F(x_2)}{x_3-x_2} x2x1F(x2)F(x1)>x3x2F(x3)F(x2)
G ( x ) = F ( x 1 ) + F ( x 3 ) − F ( x 2 ) x 3 − x 2 ( x − x 1 ) G(x)=F(x_1)+\frac{F(x_3)-F(x_2)}{x_3-x_2}(x-x_1) G(x)=F(x1)+x3x2F(x3)F(x2)(xx1)则对于函数 H ( x ) = G ( x ) − F ( x ) H(x)=G(x)-F(x) H(x)=G(x)F(x)而言,有 H ( x 1 ) = 0 H ( x 2 ) < 0 H ( x 3 ) = 0 H(x_1)=0\quad H(x_2)<0\quad H(x_3)=0 H(x1)=0H(x2)<0H(x3)=0因此 H ( x ) H(x) H(x) [ x 1 , x 3 ] [x_1,x_3] [x1,x3]上最小值在 ( x 1 , x 3 ) (x_1,x_3) (x1,x3)某点 c c c达到,则有 F [ 2 ] ( c ) = − H [ 2 ] ( c ) = − l i m h → 0 + H ( c + 2 h ) − 2 H ( c ) + H ( c − 2 h ) 4 h 2 ≤ 0 F^{[2]}(c)=-H^{[2]}(c)=-\underset{h\to 0^+}{lim}\frac{H(c+2h)-2H(c)+H(c-2h)}{4h^2}\leq 0 F[2](c)=H[2](c)=h0+lim4h2H(c+2h)2H(c)+H(c2h)0这与 F [ 2 ] ( x ) > 0 F^{[2]}(x)>0 F[2](x)>0矛盾,故 F ( x ) F(x) F(x)是凸函数,而令 ε → 0 \varepsilon\to0 ε0,即得到 f ( x ) f(x) f(x)也是凸函数.同理,可证 f ( x ) f(x) f(x)是凹函数.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值