应用场景:
科学计算:在数学、物理、工程等领域进行数值计算和模拟,例如求解线性方程组、数值积分、微分方程等。
数据分析和处理:处理大规模的数据,进行数据清洗、转换、统计分析等操作。
机器学习和深度学习:作为数据的基本表示形式,用于训练模型和处理特征。
图像处理:存储和操作图像的像素值。
np.array():可以从 Python 的列表或元组创建数组。
import numpy as np
# 从列表创建数组
arr1 = np.array([1, 2, 3, 4, 5])
# 从元组创建数组
arr2 = np.array((6, 7, 8, 9, 10))
np.zeros():创建一个全为 0 的数组。
# 创建一个 3x3 的全 0 数组
zero_arr = np.zeros((3, 3))
np.ones():创建一个全为 1 的数组。
# 创建一个 2x4 的全 1 数组
one_arr = np.ones((2, 4))
np.full():创建一个指定值填充的数组。
# 创建一个 4x4 的数组,全部填充为 5
full_arr = np.full((4, 4), 5)
np.eye():创建一个单位矩阵(对角线为 1,其余为 0 的矩阵)。
# 创建一个 3x3 的单位矩阵
eye_arr = np.eye(3)
np.arange():类似于 Python 的 range 函数,创建一个等差数组。
# 创建从 0 到 9 的等差数组,步长为 1
arange_arr = np.arange(10)
# 创建从 1 到 10 的等差数组,步长为 2
arange_arr2 = np.arange(1, 11, 2)
np.linspace():创建一个在指定区间内等间隔分布的数组。
# 创建在 0 到 1 之间均匀分布的 5 个数的数组
linspace_arr = np.linspace(0, 1, 5)
np.random.rand():创建一个在 [0, 1) 区间内均匀分布的随机数组。
# 创建一个 2x3 的随机数组
rand_arr = np.random.rand(2, 3)
np.random.randn():创建一个符合标准正态分布(均值为 0,方差为 1)的随机数组。
# 创建一个 3x3 的标准正态分布随机数组
randn_arr = np.random.randn(3, 3)
以上就是文章全部内容了,如果喜欢这篇文章的话,还希望三连支持一下,感谢!