【学习笔记】《模式识别》4:贝叶斯判别准则

本文详细介绍了贝叶斯判别准则的基本概念及其在模式识别中的应用,包括最小错误率决策、最小风险决策等内容,并探讨了贝叶斯分类器的错误概率。

贝叶斯判别准则

一、研究对象及相关概率

1. 两类研究对象

获取模式的观察值时,有两种情况:

  • 确定性事件:事物间有确定的因果关系;
  • 随机事件:事物间没有确定的因果关系,观察到的特征具有统计特性,是一个随机向量。只能利用模式集的统计特性进行分类,使分类器发生分类错误的概率最小。

2.概率

在这里插入图片描述

3. 条件概率

在这里插入图片描述

4. 模式识别中的三个概率

在这里插入图片描述

5. 两对条件概率的区别

在这里插入图片描述

二、贝叶斯决策

1.最小错误率贝叶斯决策

(1) 采用后验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值