Miller-Rabin素性测试

根据费马小定理,若 n n n 为质数,且 a < n a < n a<n,则有 a n − 1 ≡ 1 ( m o d    n ) a ^ {n - 1} \equiv 1 (mod \ \ n) an11(mod  n)

n − 1 = d × 2 r , g c d ( d , 2 ) = 1 n - 1 = d \times 2 ^ r, gcd(d, 2) = 1 n1=d×2r,gcd(d,2)=1,此时若 n n n 为质数,必有 a d ≡ 1 ( m o d    n ) a ^ d \equiv 1 (mod \ \ n) ad1(mod  n) a d × 2 i ≡ − 1 ( m o d    n ) , 0 ≤ i < r a ^ {d \times 2 ^ i} \equiv -1 (mod \ \ n), 0 \leq i < r ad×2i1(mod  n),0i<r 成立。

但这只是 n n n 为质数的必要不充分条件。

但若 n n n 对于 a a a 2 , 3 , 5 , 7 , 13 , 29 , 37 , 89 2, 3, 5, 7, 13, 29, 37, 89 2,3,5,7,13,29,37,89 均成立,则在 i n t int int 范围内 n n n 必为质数;

若对 a a a 取前 11 11 11 个质数均成立,则在 l o n g    l o n g long \ \ long long  long 范围内 n n n 必为质数。

反之,若 n n n 为偶数,则不一定均成立。

const int prime[8] = {2, 3, 5, 7, 13, 29, 37, 89};

inline int qpow(int a, int b, int p) {
	int ans = 1, x = a % p;
	while (b) {
		if (b & 1) ans = 1ll * ans * x % p;
		x = 1ll * x * x % p, b >>= 1;
	}
	return ans;
}

inline int miller_rabin(int x) {
	if (x <= 1) return 0;
	for (int i = 0; i < 8; ++i)
		if (x == prime[i]) return 1;
	for (int i = 0; i < 8; ++i) {
		int d = x - 1, r = 0;
		while (d % 2 == 0) d /= 2, ++r;
		int a = qpow(prime[i], d, x), flag = 0;
		if (a == 1) continue;
		for (int j = 0; j < r; ++j) {
			if (a == x - 1) {
				flag = 1;
				break;
			}
			a = 1ll * a * a % x;
		}
		if (!flag) return 0;
	}
	return 1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值