在神经网络中,种子选择机制的作用主要有两个方面:
-
确保实验的可重复性:由于神经网络的初始化参数通常是随机的,不同的初始化参数可能导致不同的训练结果。通过设置固定的随机种子,可以确保每次实验的初始条件相同,从而使得实验结果具有可重复性。
-
评估模型的鲁棒性:随机种子的选择和变化可以帮助评估模型对于不同初始位置的敏感性,从而评估模型的鲁棒性。一个优秀的模型应该能够处理由于随机初始位置带来的变化,并找到最优解。
种子选择机制在高维特征空间中的作用是确定每个对应关系的初始置信度,并使用非最大抑制法(Non-Maximum Suppression, NMS)来选择高置信度和分布良好的对应关系作为种子(Ns)。以下是其作用和实现方法的详细说明:
作用:
- 初始置信度计算:通过分析高维特征,种子选择机制能够计算出每个对应关系的初始置信度。这通常涉及到评估特征之间的相似性或匹配程度。
- 选择高置信度对应关系:非最大抑制法用于筛选出置信度最高的对应关系,这些对应关系被认为是更可靠的种子点。
- 构建共识集:被选中的种子点因其丰富的上下文信息更有可能被表示为内点,这有助于构建一个更可靠的共识集,从而提高整体的匹配质量。
实现方法:
- 高维特征分析:首先