基于对比增强的超声视频的域知识为乳腺癌诊断提供了深度学习

期刊分析

期刊名: IEEE Transactions on Medical Imaging
期刊信息: IF: 8.9; JCR: Q1; 中科院一区

其余信息: 代码

摘要

近年来,深度学习已被广​​泛用于乳腺癌的诊断中,并且出现了许多高性能模型。但是,大多数现有的深度学习模型主要基于静态乳房超声(US)图像。在实际诊断过程中,对比增强超声(CEU)是放射科医生常用的技术。与静态乳房图像相比,CEUS视频可以提供更详细的肿瘤血液供应信息,因此可以帮助放射学家进行更准确的诊断。在本文中,我们提出了一个基于CEUS视频的新型诊断模型。该模型的骨干是一个3D卷积神经网络。更具体地说,我们注意到放射线医生在浏览CEUS视频时通常遵循两种特定模式。一种模式是,它们专注于特定的时间段,另一个模式是他们注意CEU框架和相应的美国图像之间的差异。为了将这两种模式纳入我们的深度学习模型,我们设计了一个领域知识指导的时间注意模块和通道注意模块。我们在由221例病例组成的胸前数据集上验证我们的模型。结果表明,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值