论文总结【2024.11】IEEE Transactions on Geoscience and Remote Sensing

IEEE Transactions on Geoscience and Remote Sensing

1、FFCA-YOLO for Small Object Detection in Remote Sensing Images【FFCA-YOLO 用于遥感图像中小目标检测】

特征表示不足、背景混淆等问题使得遥感中小目标的探测任务变得艰巨。特别是当算法将部署在机上进行实时处理时,这需要在有限的计算资源下对准确性和速度进行广泛的优化。为了解决这些问题,本文提出了一种称为特征增强融合和上下文感知 YOLO (FFCA-YOLO) 的高效检测器。FFCA-YOLO 包括三个创新的轻量级和即插即用模块:功能增强模块 (FEM)、功能融合模块 (FFM) 和空间上下文感知模块 (SCAM)。这三个模块分别提高了局域网感知、多尺度特征融合全局关联跨信道和空间的网络能力,同时尽可能避免增加复杂性。因此,小物体的弱特征表示得到了增强,并且可混淆的背景被抑制了。使用两个用于小目标检测的公共遥感数据集 (VEDAI 和 AI-TOD) 和一个自建数据集 (USOD) 来验证 FFCA-YOLO 的有效性。FFCA-YOLO 的准确率达到 0.748、0.617 和 0.909(以 mAP50 为单位),超过了几个基准模型和最先进的方法。同时,FFCA-YOLO 的稳健性也在不同的模拟降解条件下得到了验证。此外,为了在保证效率的同时进一步减少计算资源消耗,通过基于部分卷积 (PConv) 重建 FFCA-YOLO 的主干和颈部,优化了 FFCA-YOLO (L-FFCA-YOLO) 的精简版。与 FFCA-YOLO 相比,L-FFCA-YOLO 具有更快的速度、更小的参数尺度和更低的计算能力要求,但精度损失很小。源代码将在 https://github.com/yemu1138178251/FFCA-YOLO 

2.用于遥感图像语义分割的 Swin Transformer 嵌入 UNet

Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation

全局上下文信息对于遥感 (RS) 图像的语义分割至关重要。然而,现有的大多数方法都依赖于卷积神经网络 (CNN),由于卷积运算的局部性,直接获取全局上下文具有挑战性。受具有强大全局建模能力的 Swin transformer 的启发,我们提出了一种名为 ST-U 形网络 (UNet) 的新型 RS 图像语义分割框架,它将 Swin transformer 嵌入到经典的基于 CNN 的 UNet 中。ST-UNet 构成了 Swin 变压器和 CNN 并行的新型双编码器结构。首先,我们提出了一个空间交互模块(SIM),它通过建立像素级关联来对 Swin transformer 块中的空间信息进行编码,以增强被遮挡对象的特征表示能力。其次,我们构建了一个特征压缩模块(FCM),以减少细节信息的损失,并在 Swin transformer 的补丁标记降采样中浓缩更多的小尺度特征,从而提高了小尺度地面目标的分割精度。最后,作为双编码器之间的桥梁,关系聚合模块 (RAM) 旨在将 Swin 转换器的全局依赖项分层集成到 CNN 的功能中。我们的 ST-UNet 分别对 ISPRS-Vaihingen 和 Potsdam 数据集进行了重大改进。该代码将在 https://github.com/XinnHe/ST-UNet .

SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remot

### IEEE Transactions on Geoscience and Remote Sensing (TGRS) EndNote Citation Style Setup For setting up the citation style of IEEE Transactions on Geoscience and Remote Sensing within EndNote, one must ensure that the specific ENS file corresponding to this journal is correctly placed into the styles folder used by EndNote software[^1]. After placing the downloaded `IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.ens` file in the appropriate directory (`Styles`), restarting EndNote will make the new style available for selection. The formatting specifics such as alignment and indentation—often referred to as hanging indent—are predefined within the `.ens` file itself when it comes from a reputable source like an official journal page or EndNote's own library of styles. To apply this style: - Open EndNote. - Navigate through the menu options to select preferences related to output styles. - Choose "Select Another Style..." option if necessary. - Browse and locate the recently added IEEE Transactions on Geoscience and Remote Sensing style. - Select it to set as default or use whenever required. Once applied, all citations managed under this profile should conform automatically to the guidelines specified by IEEE Transactions on Geoscience and Remote Sensing, including proper text justification and spacing rules defined within the style settings. ```python # Example Python code demonstrating how not to handle EndNote styles programmatically; # actual configuration happens via GUI interaction with EndNote application. def configure_endnote_style(style_name="IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING"): print(f"Configuring {style_name}...") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值