Python之音频信号处理(一)音频基础知识

一、音频基础知识

1、声音的三要素

(1)音调

人耳对声音高低的感觉称为音调(也叫音频)。音调主要与声波的频率有关。声波的频率高,则音调也高。一般音频 儿童>女生>男生。
人耳听觉音频范围是20Hz-20000Hz(做音频压缩时不在这个范围内的数据就可以砍掉)。
在这里插入图片描述

(2)音量

也就是响度。人耳对声音强弱的主观感觉称为响度。响度和声波振动的幅度有关。一般说来,声波振动幅度越大则响度也越大。
人们对响度的感觉还和声波的频率有关,同样强度的声波,如果其频率不同,人耳感觉到的响度也不同。
在这里插入图片描述

(3)音色

也就是音品。音色是人们区别具有同样响度、同样音调的两个声音之所以不同的特性,或者说是人耳对各种频率、各种强度的声波的综合反应。音色与声波的振动波形有关,或者说与声音的频谱结构有关。

2、音频的量化与编码

(1)音频的量化过程

现实生活中,我们听到的声音都是时间连续的,我们把这种信号叫模拟信号。模拟信号(连续信号)需要量化成数字信号(离散的、不连续的信号)以后才能在计算机中使用。如下所示量化过程分为5个步骤:

  • 模拟信号
    现实生活中的声音表现为连续的、平滑的波形,其横坐标为时间轴,纵坐标表示声音的强弱。
  • 采样
    按照一定的时间间隔在连续的波上进行采样取值,如下图所示取了10个样。
  • 量化
    将采样得到的值进行量化处理,也就是给纵坐标定一个刻度,记录下每个采样的纵坐标的值。
  • 编码
    将每个量化后的样本值转换成二进制编码。
  • 数字信号
    将所有样本二进制编码连起来存储在计算机上就形成了数字信号。
    在这里插入图片描述

(2)量化的基本概念

1)采样大小

一个采样用多少个bit存放,常用的是16bit(这就意味着上述的量化过程中,纵坐标的取值范围是0-65535,声音是没有负值的)。

2)采样率

也就是采样频率(1秒采样次数),一般采样率有8kHz、16kHz、32kHz、44.1kHz、48kHz等,采样频率越高,声音的还原就越真实越自然,当然数据量就越大。
模拟信号中,人类听觉范围是20-20000Hz,如果按照44.1kHz的频率进行采样,对20HZ音频进行采样,一个正玄波采样2200次;对20000HZ音频进行采样,平均一个正玄波采样2.2次。

3)声道数

为了播放声音时能够还原真实的声场,在录制声音时在前后左右几个不同的方位同时获取声音,每个方位的声音就是一个声道。声道数是声音录制时的音源数量或回放时相应的扬声器数量,有单声道、双声道、多声道。

4)码率

也叫比特率,是指每秒传送的bit数。单位为 bps(Bit Per Second),比特率越高,每秒传送数据就越多,音质就越好。

码率计算公式:
码率 = 采样率 * 采样大小 * 声道数

比如采样率44.1kHz,采样大小为16bit,双声道PCM编码的WAV文件:
码率=44.1hHz16bit2=1411.2kbit/s。
那么录制1分钟的音乐的大小为(1411.2 * 1000 * 60) / 8 / 1024 / 1024 = 10.09M。

3、音频压缩技术

音频压缩主要包括2种方法:

(1)消除冗余数据

这种压缩的主要方法是去除采集到的音频冗余信息,这些被删除掉的音频信号是没法恢复的,所以称为有损压缩。
冗余信息包括人类听觉范围之外的音频信号和被掩蔽掉的音频信号。什么是被掩蔽的信号呢?信号的掩蔽分为频域掩蔽和时域掩蔽。

1)频域掩蔽效应

人类听觉范围是20-20000Hz,但这并不意味着只要是这个频率范围内的声音都可以听到,能否听到还与声音的分贝大小有关,有个分贝临界值,高于这个临界值的声音才能听到,低于这个临界值的声音就听不到,在不同的频率下这个临界值是不一样的。
还有一种情况,比如2个音调差不多的人同时说话,一个声音很大,一个声音很小&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值