这篇文章会从统计建模的方面来说明,机器学习方面的回归模型将放到之后。
一、模型假设
考虑模型如下
建立回归模型时,需要考虑数据是否满足以下六个条件。满足以下条件的数据才具有用回归模型模拟的意义,同时回归模型对于数据也才具备解释和预测的能力。
指数分布族和广义线性回归(见上篇)可以保证线性回归模型的以下基本假设
a、Y的平均值能够准确地被由X组成的线性函数建模出来
b、解释变量和随机扰动项不存在线性关系
c、解释变量之间不存在线性关系(或强相关)
d、假设随机误差项ε是一个均值为0的正态分布
e、假设随机误差项ε的方差恒为σ^2
f、误差是独立的。
二、目标函数(以一元回归为例)
最小化每个观测到拟合曲线的距离平方和
对于待求变量求偏导,令其为0
三、模型检验:
统计学中对于模型的检验分为三部分,
一是模型整体拟合情况检验即拟合优度检验,衡量模型预测数据与实际数据的差别来看待模型整体的处理(模型形式/参数选择等&#x
统计回归模型的设计
最新推荐文章于 2023-09-21 23:21:55 发布