回归模型(背景和原理)

回归模型起源于高尔顿在遗传学中的研究,揭示了身高的回归效应。数学原理涉及指数族分布,如伯努利分布和高斯分布,并在广义线性回归中应用,其中自然参数与输入特征呈线性关系。该模型用于预测和分析变量间的线性关系。
摘要由CSDN通过智能技术生成

回归模型是做数据分析,统计建模和机器学习最先接触的模型,在大学读书的时候关注的就是计算过程,很多人在学习数学以及在数学基础上的研究,常常被复杂的公式所影响。有时候需要跳出来,看这些公式的目的,用途等,或许可以了解的更好。我准备从背景、数学原理、机器学习算法、python语言、模型解释和模型变化等方面来和大家交流回归模型。
一、回归模型产生的背景
“回归”是由英国著名生物学家兼统计学家高尔顿(Francis Galton,1822~1911,生物学家达尔文的表弟)在研究人类遗传问题时提出来的。为了研究父代与子代身高的关系,高尔顿搜集了1078对父亲及其儿子的身高数据。他发现这些数据的散点图大致呈直线状态,也就是说,总的趋势是父亲的身高增加时,儿子的身高也倾向于增加。但是,高尔顿对试验数据进行了深入的分析,发现了一个很有趣的现象—回归效应。因为当父亲高于平均身高时,他们的儿子身高比他更高的概率要小于比他更矮的概率;父亲矮于平均身高时,他们的儿子身高比他更矮的概率要小于比他更高的概率。它反映了一个规律,即这两种身高父亲的儿子的身高,有向他们父辈的平均身高回归的趋势。对于这个一般结论的解释是:大自然具有一种约束力,使人类身高的分布相对稳定而不产生两极分化,这就是所谓的回归效应。
1855年, 高尔顿发表《遗传的身高向平均数方向的回归》一文,他和他的学生卡尔•皮尔逊Karl•Pearson通过观察1078对夫妇的身高数据,以每对夫妇的平均身高作为自变量,取他们的一个成年儿子的身高作为因变量,分析儿子身高与父母身高之间的关系,发现父母的身高可以预测子女的身高,两者近乎一条直线。当父母越高或越矮时,子女的身高会比一般儿童高或矮,他将

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值