题目连接:01背包模板题
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
对于01背包的状态变化来说,从前一个状态转移到下一个状态只有两种情况,即第i个物品选或者不选,当不选第i个物品,那么dp【i】的状态就是dp【i-1】的状态,如果选第i个物品(前提是背包空间足够),那么dp【i】的状态就是dp【i-1】里体积空出v【i】的状态。
状态转移方程:dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
dp数组的i代表只考虑前i个物品,j表示最大可容纳的体积,dp【i】【j】表示只考虑前i个物品,体积不超过j时的最大价值。
#include<algorithm>
using namespace std;
int n,m;
int dp[1005][1005];
int v[1005],w[1005];
int ans;
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
dp[i][j]=dp[i-1][j];
if(j>=v[i])
{
dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
}
}
}
for(int i=0;i<=m;i++)
{
if(ans<dp[n][i])
{
ans=dp[n][i];
}
}
cout<<ans<<endl;
}
当数据过大,二维数组的空间复杂度太大,需要对代码进行空间优化,把状态转移数组变成一维数组。
#include<algorithm>
using namespace std;
int n,m;
int dp[1005];
int v[1005],w[1005];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=m;j>=v[i];j--)
{
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
}
}
cout<<dp[m]<<endl;
}
遍历时内层循环从大到小遍历以保证dp[j-v[i]]是dp【i-1】【j-v[i]】,如果从小到大遍历会出现第i个物品在之前被计算过,又重新计算的状况,物品就不再是唯一的,而是无限个(完全背包)。