超螺旋滑模控制(STA)

超螺旋滑模控制是一种适用于二阶系统的滑模控制方法,其优势在于不含高频切换成分,能减少系统中的抖振。通过设计滑模面和控制器,可以确保系统的稳定性。文章详细介绍了系统的动态模型、滑模面的构建、控制器的设计以及稳定性证明过程,包括李雅普诺夫函数的导数分析和特征根计算,最终展示了如何通过控制参数保证系统的稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超螺旋滑模控制(Super Twisting Algorithm, STA)

超螺旋滑模控制又称超扭滑模控制,可以说是二阶系统中最好用的滑模控制方法。

系统模型

对于二阶系统可以建立具有标准柯西形式的微分方程组
{x˙1=x2x˙2=f+g⋅u \begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f + g \cdot u \end{cases} {x˙1=x2x˙2=f+gu
与传统滑模相比,超螺旋滑模,使用积分来获取实际控制量,不含高频切换量,所以系统中没有抖振。

令滑模面为s,只要满足以下的方程,即为稳定
{s˙=−λ∣s∣12⋅sign(s)+νν˙=−α⋅sign(s) \begin{cases} \dot s = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) + \nu \\ \dot \nu = - \alpha \cdot sign(s) \\ \end{cases} {s˙=λs21sign(s)+νν˙=αsign(s)

控制器设计

设状态 x1x_1x1 的期望值为 xdx_dxd ,则跟踪误差为
{e1=x1−xde2=e˙1=x˙1−x˙d=x2−x˙d \begin{cases} e_1 = x_1 - x_d \\ e_2 = \dot e_1 = \dot x_1 - \dot x_d = x_2 - \dot x_d \end{cases} {e1=x1xde2=e˙1=x˙1x˙d=x2x˙d
设计滑模面为
s=ce1+e2 s = ce_1 + e_2 s=ce1+e2
则滑模面的导数为
s˙=ce˙1+e˙2=ce˙2+f+g⋅u−x¨d=−λ∣s∣12⋅sign(s)+ν=−λ∣s∣12⋅sign(s)−α⋅sign(s) \begin{align} \dot s & = c \dot e_1 + \dot e_2 \nonumber \\ & = c \dot e_2 + f + g \cdot u - \ddot x_d \nonumber\\ & = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) + \nu \nonumber\\ & = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) - \alpha \cdot sign(s) \nonumber\\ \end{align} s˙=ce˙1+e˙2=ce˙2+f+gux¨d=λs21sign(s)+ν=λs21sign(s)αsign(s)
可以得到控制量
u=g−1(−f+x¨d−c1e2−λ∣s∣12sign(s)−α⋅sign(s)) u = g ^ {-1} (-f + \ddot x_d - c_1e_2 - \lambda |s| ^ {\frac {1} {2}}sign(s) - \alpha \cdot sign(s)) u=g1(f+x¨dc1e2λs21sign(s)αsign(s))
参数设定为
λ˙=ω1γ12α=λε+12(β+4ε2) \begin{align} \dot \lambda &= \omega _ 1 \sqrt{\frac {\gamma_1} {2}} \nonumber\\ \alpha &= \lambda \varepsilon + \frac{1}{2}(\beta+4\varepsilon ^ {2}) \nonumber \end{align} λ˙α=ω12γ1=λε+21(β+4ε2)
式中,α,β,ε,ω1,γ1\alpha , \beta , \varepsilon , \omega_1 , \gamma_1α,β,ε,ω1,γ1 均大于0。

稳定性证明

可以看出,控制量中含有的不再是滑模面,而是多项式 ∣s∣12|s| ^ {\frac {1} {2}}s21 。除此之外,在 s˙\dot ss˙ 中还出现了另一个参数 ν\nuν ,不妨把这两者定义为新的状态变量,在此基础上设成李雅普诺夫函数。
{z1=∣s∣12z2=ν⇒{z˙1=12∣s∣−12s˙=12∣s∣−12(−λ∣s∣12⋅sign(s)−α⋅sign(s))z˙2=ν˙=−α⋅sign(s) \begin{cases} z_1 = |s| ^ {\frac {1} {2}} \nonumber\\ z_2 = \nu \\ \end{cases} \Rightarrow \begin{cases} \dot z_1 = {\frac {1} {2}} |s| ^ {-\frac {1} {2}} \dot s = {\frac {1} {2}} |s| ^ {-\frac {1} {2}}(-\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) - \alpha \cdot sign(s)) \\ \dot z_2 = \dot \nu = -\alpha \cdot sign(s) \\ \end{cases} {z1=s21z2=ν{z˙1=21s21s˙=21s21(λs21sign(s)αsign(s))z˙2=ν˙=αsign(s)
将第一项带入第二项
{z˙1=12∣z1∣(−λz1+z2)z˙2=ν˙=−α⋅sign(s)=−α⋅sign(s)∣s∣12∣s∣−12=−αz1∣z1∣⇒{z˙1=12∣z1∣(−λz1+z2)z˙2=−αz1∣z1∣ \begin{align} &\begin{cases} \dot z_1 = \frac {1} {2|z_1|}(-\lambda z_1 + z_2) \\ \dot z_2 = \dot \nu = -\alpha \cdot sign(s) = -\alpha \cdot sign(s) |s| ^ {\frac {1}{2}} |s| ^ {-\frac {1}{2}} = -\alpha {\frac {z_1}{|z_1|}} \nonumber \end{cases} \\ \nonumber & \Rightarrow \\ \nonumber &\begin{cases} \dot z_1 = \frac {1} {2|z_1|}(-\lambda z_1 + z_2) \\ \dot z_2 = -\alpha {\frac {z_1}{|z_1|}} \\ \end{cases} \\ \end{align} \nonumber {z˙1=2∣z11(λz1+z2)z˙2=ν˙=αsign(s)=αsign(s)s21s21=αz1z1{z˙1=2∣z11(λz1+z2)z˙2=αz1z1
设置新的状态变量为
Z=[z1z2] Z = \begin{bmatrix} z_1 \\ z_2 \\ \end{bmatrix} Z=[z1z2]
设置李雅普诺夫函数为
V0=ZTPZ=(β+4ε2)z12+z22−4εz1z2 V_0 = Z^TPZ = (\beta+4\varepsilon^2)z_1^2 + z_2^2 - 4\varepsilon z_1 z_2 V0=ZTPZ=(β+4ε2)z12+z224εz1z2
其中PPP
P=[β+4ε2−2ε−2ε1] P=\begin{bmatrix} \beta+4\varepsilon^2 & -2\varepsilon \\ -2\varepsilon & 1 \\ \end{bmatrix} P=[β+4ε22ε2ε1]

李雅普诺夫函数的导数

对李雅普诺夫函数进行求导
V˙0=2(β+4ε2)z1z˙1+2z2z˙2−4εz˙1z2−4εz1z˙2=2(β+4ε2)z1(12∣z1∣(−λz1+z2))+2z2(−αz1∣z1∣)−4ε(12∣z1∣(−λz1+z2))z2−4εz1(−λz1+z2)=−1∣z1∣ZTQZ \begin{align} \dot V_0 &= 2(\beta+4\varepsilon^2)z_1 \dot z_1 + 2z_2 \dot z_2 - 4\varepsilon \dot z_1 z_2 - 4\varepsilon z_1 \dot z_2 \nonumber\\ &= 2(\beta+4\varepsilon^2)z_1 (\frac {1} {2|z_1|}(-\lambda z_1 + z_2)) + 2z_2(-\alpha {\frac {z_1}{|z_1|}}) - 4\varepsilon (\frac {1} {2|z_1|}(-\lambda z_1 + z_2)) z_2 - 4\varepsilon z_1 (-\lambda z_1 + z_2) \nonumber\\ &= - \frac {1} {|z_1|} Z^T Q Z \nonumber \end{align} V˙0=2(β+4ε2)z1z˙1+2z2z˙24εz˙1z24εz1z˙2=2(β+4ε2)z1(2∣z11(λz1+z2))+2z2(αz1z1)4ε(2∣z11(λz1+z2))z24εz1(λz1+z2)=z11ZTQZ
其中 QQQ
Q=[−4αε+λ(β+4ε2)−12(β+4ε2)+α−λε−12(β+4ε2)+α−λε2ε]=[ABCD] Q = \begin{bmatrix} -4\alpha \varepsilon + \lambda(\beta+4 \varepsilon^2) & -\frac{1}{2}(\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon \\ -\frac{1}{2} (\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon & 2\varepsilon \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} Q=[4αε+λ(β+4ε2)21(β+4ε2)+αλε21(β+4ε2)+αλε2ε]=[ACBD]
这样我们得到李雅普诺夫函数
V˙0=−1∣z1∣ZTQZ \dot V_0 = - \frac {1} {|z_1|} Z^T Q Z V˙0=z11ZTQZ
QQQ 的特征根
∣pI−Q∣=∣p−ABCp−D∣=p2−(A+D)p+AD−BC=0 |pI -Q| = \begin{vmatrix} p-A & B \\ C & p - D \end{vmatrix} = p^2-(A+D)p + AD - BC = 0 pIQ=pACBpD=p2(A+D)p+ADBC=0
解方程组解得特征根为
{pmax(Q)=A+D+(A−D)2+4BC2pmin(Q)=A+D−(A−D)2+4BC2 \begin{cases} p_{max}(Q) = \frac {A+D + \sqrt{(A-D)^2+4BC}} {2}\\ p_{min}(Q) = \frac {A+D - \sqrt{(A-D)^2+4BC}} {2} \end{cases} pmax(Q)=2A+D+(AD)2+4BCpmin(Q)=2A+D(AD)2+4BC
所以
pmin(Q)ZTZ=A+D+(A−D)2+4BC2(z12+z22) p_{min}(Q) Z^T Z = \frac {A+D + \sqrt{(A-D)^2+4BC}} {2} (z_1^2 + z_2^2) pmin(Q)ZTZ=2A+D+(AD)2+4BC(z12+z22)

ZTQZ=Az12+(B+C)Z1Z2+Dz22 Z^TQZ = A z_1^2 + (B+C)Z_1Z_2 + Dz_2^2 ZTQZ=Az12+(B+C)Z1Z2+Dz22

比较 $p_{min}(Q) Z^T Z 与与Z^TQZ$的大小,为了简便运算,将根号项用 RRR 表示
Dval=2(ZTQZ−pmin(Q)ZTZ)=(A−D+R)z12+(D−A+R)z22+2(B+C)z1z2=(A−D+R)[z12+(D−A+R)(A−D+R)z22+2(B+C)(A−D+R)z1z2]=(A−D+R)[z12+(D−A+R)(D+R−A)(A−D+R)(D+R−A)z22+2(B+C)(R+D−A)(A−D+R)(R+D−A)z1z2]=(A−D+R)[z12+(D+R−A)24BCz22+2(B+C)(R+D−A)4BCz1z2]=(A−D+R)[z12+(D+R−A)24BCz22+(D+R−A)24BCz1z2(D+R−A)24BCz1z2+2(B+C)(R+D−A)4BCz1z2]=(A−D+R)[(z1+D+R−A2BCz2)2+(2B+2C−4BC)(R+D−A)4BCz1z2] \begin{align} D_{val} &=2(Z^TQZ - p_{min}(Q) Z^T Z ) \nonumber\\ &= (A-D+R)z_1^2+(D-A+R)z_2^2+2(B+C)z_1z_2 \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D-A+R)}{(A-D+R)}z_2^2 + \frac{2(B+C)}{(A-D+R)}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D-A+R)(D+R-A)}{(A-D+R)(D+R-A)}z_2^2 + \frac{2(B+C)(R+D-A)}{(A-D+R)(R+D-A)}z_1z_2\right] \nonumber \\ &= (A-D+R)\left[z_1^2 + \frac{(D+R-A)^2}{4BC}z_2^2 + \frac{2(B+C)(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D+R-A)^2}{4BC}z_2^2 + \sqrt{\frac{(D+R-A)^2}{4BC}}z_1z_2 \sqrt{\frac{(D+R-A)^2}{4BC}}z_1z_2 + \frac{2(B+C)(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[(z_1 + \frac{D+R-A}{2 \sqrt{BC}}z_2)^2 + \frac{(2B+2C-4\sqrt{BC})(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ \end{align} Dval=2(ZTQZpmin(Q)ZTZ)=(AD+R)z12+(DA+R)z22+2(B+C)z1z2=(AD+R)[z12+(AD+R)(DA+R)z22+(AD+R)2(B+C)z1z2]=(AD+R)[z12+(AD+R)(D+RA)(DA+R)(D+RA)z22+(AD+R)(R+DA)2(B+C)(R+DA)z1z2]=(AD+R)[z12+4BC(D+RA)2z22+4BC2(B+C)(R+DA)z1z2]=(AD+R)[z12+4BC(D+RA)2z22+4BC(D+RA)2z1z24BC(D+RA)2z1z2+4BC2(B+C)(R+DA)z1z2]=(AD+R)[(z1+2BCD+RAz2)2+4BC(2B+2C4BC)(R+DA)z1z2]
上式中
R+A−D=(A−D)2+4BC+(A−D)≥0 R + A - D = \sqrt{(A-D)^2+4BC} + (A - D) \ge 0 R+AD=(AD)2+4BC+(AD)0

(z1+D+R−A2BCz2)2≥0 (z_1 + \frac{D+R-A}{2 \sqrt{BC}}z_2)^2 \ge 0 (z1+2BCD+RAz2)20

{2B+2C−4BC≥0R+D−A=(A−D)2+4BC+(D−A)≥0⇒(2B+2C−4BC)(R+D−A)4BC≥0 \begin{cases} 2B+2C-4\sqrt{BC} \ge 0 \\ R+D-A = \sqrt{(A-D)^2+4BC} + (D - A) \ge 0 \\ \end{cases} \Rightarrow \frac{(2B+2C-4\sqrt{BC})(R+D-A)}{4BC} \ge 0 {2B+2C4BC0R+DA=(AD)2+4BC+(DA)04BC(2B+2C4BC)(R+DA)0

所以我们得到
ZTQZ≥pmin(Q)ZTZ Z^TQZ \ge p_{min}(Q) Z^T Z ZTQZpmin(Q)ZTZ
同理可证
ZTQZ≤pmax(Q)ZTZ Z^TQZ \le p_{max}(Q) Z^T Z ZTQZpmax(Q)ZTZ

李雅普诺夫函数导数的变换

上式是根据 V˙0=−1∣z1∣ZTQZ\dot V_0 = -\frac {1} {|z_1|} Z^TQZV˙0=z11ZTQZ 做出的,对于 V0=ZTPZV_0 = Z ^ T P ZV0=ZTPZ 同样根据上式可得

向量的0范数,向量中非零元素的个数
向量的1范数,向量中各元素绝对值的模
向量的2范数,通常意义上的模值,欧几里得范数
向量的无穷范数,向量的最大值

矩阵的1范数,列和范数,所有矩阵列向量绝对值之和的最大值
矩阵的2范数,谱范数,即 ATAA^TAATA矩阵的最大特征值的开平方
矩阵的无穷范数,行和范数,所有矩阵行向量绝对值之和的最大值
矩阵的F范数,Forbenius范数,所有矩阵元素绝对值的平方和再开放

ZTPZ≥pmin(P)ZTZ⇒(ZTPZ)1/2≥pmin1/2(P)(ZTZ)1/2=pmin1/2(P)∥Z∥⇒∥Z∥≤(ZTPZ)1/2pmin1/2(P)=V01/2pmin1/2(P) \begin{gather} Z^TPZ \ge p_{min}(P)Z^TZ \nonumber\\ \Rightarrow (Z^TPZ)^{1/2} \ge p_{min}^{1/2}(P)(Z^TZ)^{1/2} = p_{min}^{1/2}(P) \Vert Z \Vert \nonumber\\ \Rightarrow \Vert Z\Vert \le \frac{(Z^TPZ)^{1/2}}{p_{min}^{1/2}(P)} = \frac {V_0^{1/2}} {p_{min}^{1/2}(P)} \nonumber \end{gather} ZTPZpmin(P)ZTZ(ZTPZ)1/2pmin1/2(P)(ZTZ)1/2=pmin1/2(P)ZZpmin1/2(P)(ZTPZ)1/2=pmin1/2(P)V01/2

ZZZ的欧几里得范数为
∥Z∥=z12+z22=(∣s∣12sign(s))2+ν2=∣s∣+ν≥∣s∣=∣z1∣ \Vert Z \Vert = \sqrt {z_1^2 + z_2^2} = \sqrt{(|s| ^ {\frac {1} {2}}sign(s) )^2 + \nu ^ 2} = \sqrt{|s| + \nu} \ge \sqrt{|s|} = |z_1| Z=z12+z22=(s21sign(s))2+ν2=s+νs=z1
所以
−1∣z1∣≤−1∥Z∥ -\frac {1}{\vert z_1 \vert} \le -\frac {1}{\Vert Z \Vert} z11Z1
我们再次回到 V˙0\dot V_0V˙0
V˙0=−1∣z1∣ZTQZ≤−1∣z1∣pmin(Q)ZTZ=−1∣z1∣pmin(Q)∥Z∥2≤−1∥Z∥pmin(Q)∥Z∥2=−pmin(Q)∥Z∥≤−pmin(Q)V012pmin12(P)=−rV012 \begin{align} \dot V_0 &= - \frac{1} {|z_1|} Z^TQZ \le - \frac{1} {|z_1|} p_{min}(Q)Z^TZ \nonumber \\ &= - \frac{1} {|z_1|} p_{min}(Q) \Vert Z \Vert ^ 2 \le -\frac {1}{\Vert Z \Vert} p_{min}(Q) \Vert Z \Vert ^ 2 \nonumber\\ &= -p_{min}(Q) \Vert Z \Vert \le -p_{min}(Q) \frac {V_0^{\frac{1}{2}}} {p_{min}^{\frac{1}{2}}(P)} \nonumber\\ &= -r V_0^{\frac{1}{2}} \nonumber \end{align} V˙0=z11ZTQZz11pmin(Q)ZTZ=z11pmin(Q)Z2Z1pmin(Q)Z2=pmin(Q)Zpmin(Q)pmin21(P)V021=rV021
其中
r=pmin(Q)pmin1/2(P) r = \frac {p_{min}(Q)} {p_{min}^{1/2}(P)} r=pmin1/2(P)pmin(Q)

若系统满足 V˙≤−rV12\dot V \le -rV^{\frac {1} {2}}V˙rV21 其中r>0r>0r>0 ,则系统可以在有限时间内稳定

矩阵Q正定性的保证

上面的证明保证了系统具有李雅普诺夫稳定性,但是只有在r>0r > 0r>0的情况下才能保证系统稳定,此时需要 pmin(Q){p_{min}(Q)}pmin(Q)

pmin1/2(P){p_{min}^{1/2}(P)}pmin1/2(P) 保持同号,由于矩阵PPP为正定矩阵,所以pmin1/2(P){p_{min}^{1/2}(P)}pmin1/2(P)必大于0,那么需要保证pmin(Q){p_{min}(Q)}pmin(Q)也大于0。

正定矩阵的特征值都是正数

Q=[−4αε+λ(β+4ε2)−12(β+4ε2)+α−λε−12(β+4ε2)+α−λε2ε] Q = \begin{bmatrix} -4\alpha \varepsilon + \lambda(\beta+4 \varepsilon^2) & -\frac{1}{2}(\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon \\ -\frac{1}{2} (\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon & 2\varepsilon \end{bmatrix} Q=[4αε+λ(β+4ε2)21(β+4ε2)+αλε21(β+4ε2)+αλε2ε]

不妨直接取
α=λε+12(β+4ε2) \alpha = \lambda \varepsilon + \frac{1}{2}(\beta+4\varepsilon^2) α=λε+21(β+4ε2)
这样的话可以简化一下
Q=[(λ−2ε)(β+4ε2)−4λε2002ε] Q = \begin{bmatrix} (\lambda-2\varepsilon)(\beta+4 \varepsilon^2)-4\lambda \varepsilon^2 & 0\\ 0 & 2\varepsilon \end{bmatrix} Q=[(λ2ε)(β+4ε2)4λε2002ε]
所以 QQQ 的特征根为
{p1=(λ−2ε)(β+4ε2)−4λε2p2=2ε \begin{cases} p_1 = (\lambda-2\varepsilon)(\beta+4 \varepsilon^2)-4\lambda \varepsilon^2 \\ p_2 = 2\varepsilon \end{cases} {p1=(λ2ε)(β+4ε2)4λε2p2=2ε
由于 ε>0\varepsilon > 0ε>0 所以 p2>0p_2 > 0p2>0非常显然,现在只需要保证 p1>0p_1>0p1>0,则可以有
λ>2ε(β+4ε2)β \lambda > \frac{2\varepsilon(\beta+4\varepsilon^2)} {\beta} λ>β2ε(β+4ε2)

重写李雅普诺夫函数

上一节中给出了保证 QQQ 正定性的条件,但是 α\alphaαλ\lambdaλ 这两个参数值是人为给出的,因此需要把这两个参数加入到李雅普诺夫函数中来
V=V0+12γ1(λ−λ∗)2+12γ2(α−α∗)2 V = V_0 + \frac {1} {2\gamma_1} (\lambda-\lambda^{*})^2 + \frac{1}{2\gamma_2} (\alpha-\alpha^{*})^2 V=V0+2γ11(λλ)2+2γ21(αα)2
其中 λ∗ α∗\lambda^{*} \ \alpha^{*}λ α 为未知常数,对其求导
V˙=V˙0+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙≤−rV012+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙=−rV012+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙−ω12γ1∣λ−λ∗∣+ω12γ1∣λ−λ∗∣−ω22γ2∣α−α∗∣+ω22γ2∣α−α∗∣ \begin{align} \dot V &= \dot V_0 + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha \le -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha \nonumber\\ &= -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha -\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|+\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| -\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|+\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber \end{align} V˙=V˙0+γ11(λλ)λ˙+γ21(αα)α˙rV021+γ11(λλ)λ˙+γ21(αα)α˙=rV021+γ11(λλ)λ˙+γ21(αα)α˙2γ1ω1λλ+2γ1ω1λλ2γ2ω2αα+2γ2ω2αα
根据 (x2+y2+z2)≤∣x∣+∣y∣+∣z∣(x^2 + y^2 + z^2) \le |x| + |y| + |z|(x2+y2+z2)x+y+z
−rV012−ω12γ1∣λ−λ∗∣−ω22γ2∣α−α∗∣≤−[r2V012+ω122γ1∣λ−λ∗∣2+ω222γ2∣α−α∗∣2]12 -r V_0^{\frac{1}{2}} - \frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|-\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \le - \left[r^2V_0^{\frac{1}{2}}+ \frac {\omega_1^2} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {\omega_2^2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2\right]^{\frac{1}{2}} rV0212γ1ω1λλ2γ2ω2αα[r2V021+2γ1ω12λλ2+2γ2ω22αα2]21
r,ω1,ω2r,\omega_1,\omega_2r,ω1,ω2 中最小的数为 nnn,则上式为
[r2V012+ω122γ1∣λ−λ∗∣2+ω222γ2∣α−α∗∣2]12≤−n[V012+12γ1∣λ−λ∗∣2+12γ2∣α−α∗∣2]=−nV12 \left[r^2V_0^{\frac{1}{2}}+ \frac {\omega_1^2} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {\omega_2^2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2\right]^{\frac{1}{2}} \le-n \left[V_0^{\frac{1}{2}}+ \frac {1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {1} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2 \right] = -nV^{\frac{1}{2}} [r2V021+2γ1ω12λλ2+2γ2ω22αα2]21n[V021+2γ11λλ2+2γ21αα2]=nV21
带入 V˙\dot VV˙
V˙≤−rV012+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙−ω12γ1∣λ−λ∗∣+ω12γ1∣λ−λ∗∣−ω22γ2∣α−α∗∣+ω22γ2∣α−α∗∣≤−nV12+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙+ω12γ1∣λ−λ∗∣+ω22γ2∣α−α∗∣ \begin {align} \dot V &\le -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha -\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|+\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| -\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|+\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &\le -nV^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber \end {align} V˙rV021+γ11(λλ)λ˙+γ21(αα)α˙2γ1ω1λλ+2γ1ω1λλ2γ2ω2αα+2γ2ω2ααnV21+γ11(λλ)λ˙+γ21(αα)α˙+2γ1ω1λλ+2γ2ω2αα
由于 λ∗ α∗\lambda^{*} \ \alpha^{*}λ α 为未知常数,那我们假设 λ∗>λ,α∗>α\lambda^{*}>\lambda , \alpha^{*} > \alphaλ>λα>α ,总能找到两个常数满足这两个条件
V˙≤−nV12+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙+ω12γ1∣λ−λ∗∣+ω22γ2∣α−α∗∣=−nV12−1γ1∣λ−λ∗∣λ˙−1γ2∣α−α∗∣α˙+ω12γ1∣λ−λ∗∣+ω22γ2∣α−α∗∣=−nV12+∣λ−λ∗∣(ω12γ1−λ˙γ1)+∣α−α∗∣(ω22γ2−λ˙γ2) \begin{align} \dot V &\le -nV^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &= -nV^{\frac{1}{2}} - \frac {1} {\gamma_1} |\lambda-\lambda^{*}|\dot \lambda - \frac{1}{\gamma_2} |\alpha-\alpha^{*}|\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &= -nV^{\frac{1}{2}} + |\lambda-\lambda^{*}|(\frac {\omega_1} {\sqrt{2 \gamma_1}} - \frac{\dot \lambda} {\gamma_1}) + |\alpha-\alpha^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \lambda} {\gamma_2}) \nonumber \end{align} V˙nV21+γ11(λλ)λ˙+γ21(αα)α˙+2γ1ω1λλ+2γ2ω2αα=nV21γ11λλλ˙γ21ααα˙+2γ1ω1λλ+2γ2ω2αα=nV21+λλ(2γ1ω1γ1λ˙)+αα(2γ2ω2γ2λ˙)
此时若令
λ˙=ω1γ12 \dot \lambda = \omega_1 \sqrt{\frac{\gamma_1}{2}} λ˙=ω12γ1

V˙≤−nV12+∣λ−λ∗∣(ω22γ2−α˙γ2)=−nV12+η \dot V \le -nV^{\frac{1}{2}} + |\lambda-\lambda^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \alpha} {\gamma_2}) = -nV^{\frac{1}{2}} + \eta V˙nV21+λλ(2γ2ω2γ2α˙)=nV21+η
其中
η=∣λ−λ∗∣(ω22γ2−α˙γ2) \eta = |\lambda-\lambda^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \alpha} {\gamma_2}) η=λλ(2γ2ω2γ2α˙)
所以此系统具有李雅普诺夫稳定性,尽管有 η\etaη 存在,系统仍然可以在一定程度上保持稳定,原因在于我们证明了 V˙≤−nV12≤0\dot V \le -nV^{\frac{1}{2}} \le 0V˙nV210 而不是传统的 V˙≤0\dot V \le 0V˙0

### 超螺旋滑模控制算法实现及应用 超螺旋滑模控制是一种先进的非线性控制策略,旨在解决传统滑模控制中存在的抖振问题。它通过引入非线性超越函数以及具有特殊几何特性的滑模面曲线来改善系统的动态性能和鲁棒性。 #### 1. 基本原理 超螺旋滑模控制的核心在于设计一种特殊的滑模面方程,使得控制器能够在有限时间内收敛到平衡状态的同时减少甚至消除抖振效应。这种滑模面通常由高阶微分方程定义,并利用李雅普诺夫稳定性理论验证其全局渐近稳定性和快速收敛特性[^1]。 #### 2. 数学模型 假设系统动力学可以表示为如下形式: \[ \dot{x} = f(x) + g(x)u, \] 其中 \(x\) 是状态向量,\(f(x)\) 和 \(g(x)\) 表示已知的连续函数,\(u\) 是输入信号。对于超螺旋滑模控制系统的设计目标是找到合适的控制律 \(u(t)\),使误差变量满足特定条件下的指数衰减规律。 具体来说,可以通过构造以下类型的滑动模式表面来进行分析: \[ s(\xi)=c_0\xi+c_1\int{\xi d t }+\cdots+c_{n-1}\underbrace {\int \ldots (\int}_{(n)}\xi dt )dt , \] 这里系数 ci>0 ( i=0,.., n−1 ), ξ代表跟踪误差及其导数组合而成的新变量集合[^2]。 #### 3. 控制器设计 基于上述滑模面表达式,可推导得到相应的等效控制项 ueq 及切换增益 ksw ,从而形成完整的控制结构: \[ u=-k_sw sgn(s)+u_eq .\] 值得注意的是,在实际工程实践中还需要考虑外部干扰等因素的影响,适当调整参数设置以确保整体表现良好。 #### 4. 应用实例——永磁同步电机速度调节 作为典型应用场景之一,采用超螺旋滑模技术对PMSM实施转速闭环调控能够取得优异成果。相比于经典PID或其他常规方法而言,前者不仅具备更强抗负载突变能力而且运行更加平稳高效[^1]。 以下是Python仿真代码片段展示如何构建简单版本的此类机制用于学术研究目的: ```python import numpy as np from scipy.integrate import odeint def pmsm_model(y,t,u,params): J,b,K,L,R=params omega,i=y dydt=[(-b*omega/K-i*R/L+K*u)/J,-R*i/L+b*K/(L*J)*omega] return dydt # Parameters definition params=(0.01,0.1,8.79e-3,5.5e-3,2.8) time=np.linspace(0,5,500) initial_conditions=[0,0] control_signal=lambda t:np.piecewise(t,[t<2],[lambda _:0 , lambda _:(_.astype(float)-2)]) sol=odeint(pmsm_model, initial_conditions,time,args=(control_signal(time), params)) plt.plot(time,sol[:,0],'r-',label='Speed') plt.legend() plt.show() ``` 此脚本模拟了一个简化版PMSM响应过程并绘制出了对应的速度变化趋势图象供观察比较不同条件下效果差异情况。 ---
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LyaJpunov

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值