马尔科夫决策过程

马尔科夫过程/链:

满足“未来只与现在有关,与过去无关”的随机过程

MRP:

=马尔科夫过程+奖励+折扣因子

计算方法:

  • Bellman矩阵(O(n^3),适合小规模)
  • 动态规划(适合白盒但现实条件下是白盒很少)
  • 蒙特卡洛(基于采样和统计)
  • 时序差分
MDP:

=MRP+“刺激”(对环境而言,刺激就是agent的action)所以MDP就是环境本身

state-value function & action-value function

各自的公式和转化
上述公式很重要❗描述了现在的状态/动作价值函数和未来的关系,以及之间的转化关系。

哦~好像刷新了历史最短篇幅记录,不过 I don’t care,打算在CSDN更新有关笔记,代码放在上github上,明天更的是基于DP的策略迭代和价值迭代(悬崖寻路和冰湖环境)

感觉从头开始快不得,去年的组会至今也有半年了吧,重拾之后再理解确实有些新的体会。打算将theory和codes一起吃透,毕竟最终公式还是要转换为代码的,“纸上得来终觉浅,绝知此事要躬行”嘛。

从头编写环境、动作,然后更新环境…听起来也不是那么轻松哦~

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
马尔科夫决策过程(Markov Decision Process,MDP)一种用于描述序贯决策问题的数学模型。在代码实现上,可以使用Python的相关库来构和求解MDP问题,例如使用numpy和gym库。 下面是一个简单的马尔科夫决策过程代码示例: ```python import numpy as np # 定义MDP的状态空间、动作空间、状态转移概率和奖励函数 states = ['S1', 'S2', 'S3'] # 状态空间 actions = ['A1', 'A2'] # 动作空间 transition_probs = { 'S1': { 'A1': {'S1': 0.2, 'S2': 0.8}, 'A2': {'S2': 1.0} }, 'S2': { 'A1': {'S1': 0.6, 'S3': 0.4}, 'A2': {'S3': 1.0} }, 'S3': { 'A1': {'S3': 1.0}, 'A2': {'S1': 0.7, 'S3': 0.3} } } rewards = { 'S1': {'A1': {'S1': -10, 'S3': 5}, 'A2': {'S3': 0}}, 'S3': {'A1': {'S3': 0}, 'A2': {'S1': 20, 'S3': -5}} } # 定义MDP的价值函数和策略 values = {state: 0 for state in states} # 价值函数 policy = {state: np.random.choice(actions) for state in states} # 策略 # 迭代求解MDP的最优策略和最优价值函数 discount_factor = 0.9 # 折扣因子 num_iterations = 100 # 迭代次数 for _ in range(num_iterations): new_values = {} for state in states: action = policy[state] new_value = sum(transition_probs[state][action][next_state] * (rewards[state][action][next_state] + discount_factor * values[next_state]) for next_state in states) new_values[state] = new_value values = new_values new_policy = {} for state in states: action_values = {action: sum(transition_probs[state][action][next_state] * (rewards[state][action][next_state] + discount_factor * values[next_state]) for next_state in states) for action in actions} best_action = max(action_values, key=action_values.get) new_policy[state] = best_action policy = new_policy # 输出最优策略和最优价值函数 print("Optimal Policy:") for state, action in policy.items(): print(f"State: {state}, Action: {action}") print("Optimal Values:") for state, value in values.items(): print(f"State: {state}, Value: {value}") ``` 这段代码实现了一个简单的马尔科夫决策过程,包括定义状态空间、动作空间、状态转移概率和奖励函数,以及迭代求解最优策略和最优价值函数。在代码中,使用了折扣因子来衡量未来奖励的重要性,并通过迭代更新价值函数和策略来逐步优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值