数论_这一波令人窒息的操作

最近在搞数论,为了防止忘记,在这里留一个文章记录,其中包含一些非常细节的证明和推导,据说这对数学思维的培养很有帮助 (大佬莫喷,蒟蒻刚学OI)

1.整除

定义

∃ q 满 足 a = q b \exists q满足 a=qb qa=qb
则a能被b整除,记作: b ∣ a b|a ba

性质

  • a ∣ b 且 b ∣ a , 则 a = b 或 a = − b a|b且b|a,则a=b或a=-b abba,a=ba=b
  • 若 a ∣ b , b ∣ c , 则 a ∣ c 若a|b,b|c,则a|c ab,bc,ac
  • 若 a ∣ b , a ∣ c , 则 对 于 任 意 整 数 x , y , 有 a ∣ ( b x + c y ) 若a|b,a|c,则对于任意整数x,y,有a|(bx+cy) ab,ac,x,y,a(bx+cy)
    证明:
    由 a ∣ b , a ∣ c 由a|b,a|c ab,ac
    得 k 1 × a = b , k 2 × a = c 得k_1\times a=b,k_2\times a=c k1×a=b,k2×a=c
    则 b x + c y = k 1 × a + k 2 × a = a ( k 1 + k 2 ) 则bx+cy=k_1\times a+k_2\times a=a(k_1+k_2) bx+cy=k1×a+k2×a=a(k1+k2)
    故 a ∣ ( b x + c y ) 故a|(bx+cy) a(bx+cy)

2.带余除法

定义

对 于 整 数 a , b ( a > = b ) , a 可 以 被 唯 一 表 示 为 a = b q + r , r 即 为 余 数 对于整数a,b(a>=b),a可以被唯一表示为a=bq+r,r即为余数 a,b(a>=b),aa=bq+r,r

余数的范围和唯一性

余数范围显然是: [ 0 , ∣ b ∣ ) [0,|b|) [0,b)
唯一性证明:考虑使用反证法
假 设 a 可 以 被 表 示 为 a = b × q 1 + r 1 = b × q 2 + r 2 假设a可以被表示为a=b\times q_1+r_1=b\times q_2+r_2 aa=b×q1+r1=b×q2+r2
则 b × q 1 + r 1 = b × q 2 + r 2 则b\times q_1+r_1=b\times q_2+r_2 b×q1+r1=b×q2+r2
b × ( q 1 − q 2 ) = r 2 − r 1 b\times (q_1-q_2)=r_2-r_1 b×(q1q2)=r2r1
即 b ∣ r 2 − r 1 即b|r2-r1 br2r1
由 于 r i ∈ [ 0 , ∣ b ∣ ) 且 b ∣ r 2 − r 1 由于r_i\in [0,|b|)且b|r_2-r_1 ri[0,b)br2r1
r 2 − r 1 = 0 , 即 r 2 = r 1 r_2-r_1=0,即r_2=r_1 r2r1=0,r2=r1
由 于 开 始 我 们 假 设 r 2 ! = r 1 , 故 与 原 命 题 矛 盾 由于开始我们假设r_2 != r_1,故与原命题矛盾 r2!=r1,
得 证 得证

3.素数

定义

除了1和它本身外没有其他因子的数

性质

  • 一个数除1以外的最小正因数是素数
  • 任意数可以被分解为若干素数之积
  • 素数有无穷个

判定素数和线性筛

判定素数

各种筛法

算数基本定理(唯一分解定理)

内容

∀ x = p 1 s 1 × p 2 s 2 × . . . . . . p n s m = ∏ i = 1 m p i s i , p i 是 素 数 \forall x=p_1^{s1}\times p_2^{s_2}\times......p_n^{s_m}=\prod_{i=1}^{m}p_i^{s_i},p_i是素数 x=p1s1×p2s2×......pnsm=i=1mpisi,pi
即:任意数可以被分解为若干素数之积

推论

  • x 的 约 数 个 数 d ( n ) = ∏ i = 1 m ( s i + 1 ) , 根 据 乘 法 原 理 可 证 明 x的约数个数d(n)=\prod_{i=1}^{m}(s_i+1),根据乘法原理可证明 xd(n)=i=1m(si+1),
  • x 的 约 数 和 σ ( n ) = ∏ i = 1 m ( p i + p i 2 + . . . . . . + p i c i ) = ∏ i = 1 m ( ∑ j = 1 c i ( p i ) j ) x的约数和\sigma(n)=\prod_{i=1}^{m}(p_i+p_i^2+......+p_i^{c_i})=\prod_{i=1}^{m}(\sum_{j=1}^{c_i}(p_i)^j) xσ(n)=i=1m(pi+pi2+......+pici)=i=1m(j=1ci(pi)j)

应用

  • 令 a = p 1 s 1 × p 2 s 2 × . . . . . . p n s n , b = p 1 k 1 × p 2 k 2 × . . . . . . p n k n 令a=p_1^{s1}\times p_2^{s_2}\times......p_n^{s_n},b=p_1^{k1}\times p_2^{k_2}\times......p_n^{k_n} a=p1s1×p2s2×......pnsn,b=p1k1×p2k2×......pnkn
    [ a , b ] = p 1 m a x ( s 1 , k 1 ) × p 2 m a x ( s 2 , k 2 ) × . . . . . . p n m a x ( s n , k n ) = ∏ i = 1 n p i m a x ( s i , k i ) [a,b]=p_1^{max(s_1,k_1)}\times p_2^{max(s_2,k_2)}\times......p_n^{max(s_n,k_n)}=\prod_{i=1}^{n}p_i^{max(s_i,k_i)} [a,b]=p1max(s1,k1)×p2max(s2,k2)×......pnmax(sn,kn)=i=1npimax(si,ki)
    ( a , b ) = p 1 m i n ( s 1 , k 1 ) × p 2 m i n ( s 2 , k 2 ) × . . . . . . p n m i n ( s n , k n ) = ∏ i = 1 n p i m i n ( s i , k i ) (a,b)=p_1^{min(s_1,k_1)}\times p_2^{min(s_2,k_2)}\times......p_n^{min(s_n,k_n)}=\prod_{i=1}^{n}p_i^{min(s_i,k_i)} (a,b)=p1min(s1,k1)×p2min(s2,k2)×......pnmin(sn,kn)=i=1npimin(si,ki)
  • 由上面这个性质可得, [ a , b ] × ( a , b ) = ∣ a × b ∣ [a,b]\times(a,b)=|a\times b| [a,b]×(a,b)=a×b
  • 若(a,b)=1,则 ∏ i = 1 n p i m i n ( s i , k i ) = 1 \prod_{i=1}^{n}p_i^{min(s_i,k_i)}=1 i=1npimin(si,ki)=1,即每一个pi的最小指数为0

4.最大公因数

定义

从字面意思即可了解
⊕ \oplus :a,b的最大公因数表示为 ( a , b ) (a,b) (a,b)

性质

  • 若 ( a , b ) = 1 , 则 a , b 互 素 若(a,b)=1,则a,b互素 (a,b)=1,a,b

  • 辗转相减 ( a , b ) = ( a − b , b ) (a,b)=(a-b,b) (a,b)=(ab,b)
    证明:
    设 a 和 b 的 所 有 因 子 组 成 集 合 S , a − b 和 b 的 所 有 因 子 组 成 集 合 K 设a和b的所有因子组成集合S,a-b和b的所有因子组成集合K abS,abbK
    则 对 于 任 意 的 d ∈ S 有 : 则对于任意的d\in S有: dS:
    d ∣ a , d ∣ b d|a,d|b da,db
    则 d ∣ ( a × x + b × y ) , x 和 y 任 意 取 值 则d|(a\times x+b\times y),x和y任意取值 d(a×x+b×y),xy
    令 x = 1 , y = − 1 , 则 有 令x=1,y=-1,则有 x=1,y=1,
    d ∣ ( a − b ) d|(a-b) d(ab)
    则 对 于 任 意 的 d ∈ S 有 d ∣ ( a − b ) , d ∣ b , 即 d ∈ K 则对于任意的d\in S有d|(a-b),d|b,即d\in K dSd(ab),db,dK
    同 理 , 对 于 任 意 的 d ∈ K 有 d ∈ S 同理,对于任意的d\in K有d\in S ,dKdS
    由 上 可 知 : K ⊆ S 且 S ⊆ K 由上可知:K\subseteq S且S \subseteq K :KSSK
    故 S = K 故S=K S=K
    故 ( a , b ) = ( a − b , b ) 故(a,b)=(a-b,b) (a,b)=(ab,b)

  • 辗转相除 ( a , b ) = ( b , a ( m o d b ) ) (a,b)=(b,a\pmod b) (a,b)=(b,a(modb))
    证明:
    设 r = a ( m o d b ) , 根 据 带 余 除 法 : 设r=a\pmod b,根据带余除法: r=a(modb),:
    r = a − k × b r=a-k\times b r=ak×b
    待 证 式 子 即 化 为 : ( a , b ) = ( a , a − k × b ) 待证式子即化为:(a,b)=(a,a-k\times b) :(a,b)=(a,ak×b)
    按照辗转相减的证明思路不难证得辗转相减的推论:
    ( a , b ) = ( a − q × b , b ) (a,b)=(a-q\times b,b) (a,b)=(aq×b,b)
    令 q = k , 得 证 令q=k,得证 q=k,

  • ( a ( a , b ) , b ( a , b ) ) = 1 (\frac{a}{(a,b)},\frac{b}{(a,b)})=1 ((a,b)a,(a,b)b)=1(用唯一分解定理互素的等价变换可知)

5.裴蜀定理

内容

若 d = ( a , b ) 若d=(a,b) d=(a,b)
则 ∃ m , n 使 得 a × m + b × n = d 则\exists m,n 使得 a\times m+b\times n=d m,n使a×m+b×n=d

证明

考虑用数学归纳法证明:

当 b = 0 时 : 当b=0时: b=0:
显 然 a = d , a 可 以 取 任 意 值 , 存 在 m , n 满 足 上 式 显然a=d,a可以取任意值,存在m,n满足上式 a=damn
当 b > 0 时 : 当b>0时: b>0
假 设 对 于 x ∈ [ 0 , b − 1 ] , 都 满 足 上 式 , 其 中 a 可 以 取 任 意 值 假设对于x\in [0,b-1],都满足上式,其中a可以取任意值 x[0,b1],a
首 先 , 显 然 ( a , b ) = ( b , a ( m o d b ) ) = d 首先,显然(a,b)=(b,a\pmod b)=d ,(a,b)=(b,a(modb))=d
则 对 于 c = a ( m o d b ) , 由 于 c ∈ [ 0 , b − 1 ] 则对于c=a\pmod b,由于c\in[0,b-1] c=a(modb)c[0,b1]
故 : b × m + c × n = d − − − − − − ( θ ) 故:b\times m+c\times n=d ------(\theta) :b×m+c×n=d(θ)
由 带 余 除 法 得 : a = k × b + c , 即 c = a − k × b 由带余除法得:a=k\times b+c,即c=a-k\times b :a=k×b+c,c=ak×b
将 c 代 入 ( θ ) 中 得 b × m + ( a − k × b ) × n = d 将c代入(\theta)中得b\times m+(a-k\times b)\times n=d c(θ)b×m+(ak×b)×n=d
整 理 得 a × n + b × ( m − k × n ) = d 整理得a\times n+b\times(m-k\times n)=d a×n+b×(mk×n)=d
则 对 于 a , b , 有 m ′ = n , n ′ = m − k × n 使 得 a × m ′ + b × n ′ = d 成 立 则对于a,b,有m'=n,n'=m-k\times n使得a\times m'+b\times n'=d成立 a,b,m=n,n=mk×n使a×m+b×n=d
(这里证得了若对于[0,n]满足上式,则[0,n+1]满足了上式)
故 对 于 任 意 a , b , d = ( a , b ) , ∃ m , n 使 得 a × m + b × n = d 故对于任意a,b,d=(a,b),\exists m,n 使得 a\times m+b\times n=d abd=(a,b),m,n使a×m+b×n=d

特殊情况

( a , b ) = 1 ⇐ ⇒ a × m + b × n = 1 (a,b)=1\Leftarrow\Rightarrow a\times m+b\times n=1 (a,b)=1a×m+b×n=1

证明

推论

  • a ∣ b × c , ( a , b ) = 1 , 则 a ∣ c a|b\times c,(a,b)=1,则a|c ab×c,(a,b)=1,ac
  • 若 p 是 素 数 , p ∣ a × b , 则 p ∣ a 或 p ∣ b 若p是素数,p|a\times b,则p|a或p|b p,pa×b,papb
  • 若 ( a , n ) = 1 , ( b , n ) = 1 , 则 ( a × b , n ) = 1 若(a,n)=1,(b,n)=1,则(a\times b,n)=1 (a,n)=1,(b,n)=1,(a×b,n)=1

6.最小公倍数

定义

从字面意思即可了解
⊕ \oplus :最小公倍数表示为 [ a , b ] [a,b] [a,b]

性质

  • [ a , b ] × ( a , b ) = ∣ a × b ∣ [a,b]\times(a,b)=|a\times b| [a,b]×(a,b)=a×b

8.同余

定义

若 若 a 和 b 被 n 除 后 余 数 相 同 , 则 称 a 与 b 同 余 , 记 作 : a ≡ b ( m o d n ) 若若a和b被n除后余数相同,则称a与b同余,记作:a \equiv b \pmod n abnab:ab(modn)

性质

  • a ≡ b ( m o d n ) ⇐ ⇒ n ∣ ( a − b ) a \equiv b \pmod n \Leftarrow\Rightarrow n|(a-b) ab(modn)n(ab)
  • 若 a ≡ b ( m o d n ) , c ≡ d ( m o d n ) 若a \equiv b \pmod n,c \equiv d \pmod n ab(modn),cd(modn)
    则:
    a + c ≡ b + d ( m o d n ) a+c \equiv b+d \pmod n a+cb+d(modn)
    a × c ≡ b × d ( m o d n ) a\times c \equiv b\times d \pmod n a×cb×d(modn)
    k × a ≡ k × b ( m o d n ) k\times a \equiv k\times b \pmod n k×ak×b(modn)
    a m ≡ b m ( m o d n ) a^m \equiv b^m \pmod n ambm(modn)
  • k × a ≡ k × b ( m o d n ) , 且 ( a , n ) = 1 k\times a \equiv k\times b \pmod n,且(a,n)=1 k×ak×b(modn),(a,n)=1
    b ≡ c ( m o d n ) b\equiv c \pmod n bc(modn)(消去律,后面会用到)

9.剩余类

定义

把 所 有 模 n 后 与 a 同 余 的 整 数 构 成 的 集 合 叫 做 一 个 剩 余 类 , 记 作 [ a ] 把所有模n后与a同余的整数构成的集合叫做一个剩余类,记作[a] na[a]

则: a ≡ b ( m o d n ) ⇐ ⇒ [ a ] = [ b ] a \equiv b \pmod n \Leftarrow\Rightarrow [a]=[b] ab(modn)[a]=[b]

运算

[ a ] + [ b ] = [ a + b ] , [ a ] ∗ [ b ] = [ a ∗ b ] [a] + [b] = [a+b], [a] * [b] = [a*b] [a]+[b]=[a+b],[a][b]=[ab]

零元,单位元,负元和逆元

[ 0 ] 是 零 元 , [ 1 ] 是 单 位 元 [0]是零元,[1]是单位元 [0][1]
[ a ] 的 负 元 与 逆 元 ( 用 [ b ] 表 示 ) : [ a ] + [ b ] = [ b ] + [ a ] = 0 , [ a ] [ b ] = [ b ] [ a ] = 1 [a]的负元与逆元(用[b]表示):[a]+[b] = [b] + [a] = 0, [a][b] = [b][a] = 1 [a]([b])[a]+[b]=[b]+[a]=0,[a][b]=[b][a]=1

性质

  • [ a ] 有 逆 元 充 要 条 件 : ( a , n ) = 1 [a]有逆元充要条件:(a,n)=1 [a](a,n)=1

证明:(充要条件:即充分必要条件,若条件p可以推出条件q,则p是q的充分条件,若q又可以反推p,则q是p的必要条件)

1.充分性:
若[a]存在逆元[b],则有 a × b ≡ 1 ( m o d n ) a\times b \equiv 1\pmod n a×b1(modn),即 a × b + k × n = 1 ( k < 0 ) a\times b+k\times n=1(k<0) a×b+k×n=1(k<0)
由 于 ( a , n ) ∣ a , ( a , n ) ∣ n 由于(a,n)|a,(a,n)|n (a,n)a,(a,n)n
即 ( a , n ) ∣ a × b , ( a , n ) ∣ k × n 即(a,n)|a\times b,(a,n)|k\times n (a,n)a×b,(a,n)k×n
因 此 ( a , n ) ∣ ( a × b + k × n ) 因此(a,n)|(a\times b+k\times n) (a,n)(a×b+k×n)
则 ( a , n ) ∣ 1 则(a,n)|1 (a,n)1
故 ( a , n ) = 1 故(a,n)=1 (a,n)=1
2.必要性:
( a , n ) = 1 , 根 据 裴 蜀 定 理 , 存 在 一 对 b , y 满 足 : (a,n)=1,根据裴蜀定理,存在一对b,y满足: (a,n)=1,,b,y:
a × b + n × y = ( a , n ) = 1 a\times b+n\times y=(a,n)=1 a×b+n×y=(a,n)=1
等 价 于 a × b ≡ 1 ( m o d n ) 等价于a\times b\equiv1\pmod n a×b1(modn)
即 b 为 a 的 逆 元 即b为a的逆元 ba
证 毕 证毕

  • 若 [ a ] 有 逆 元 , 则 逆 元 唯 一 若[a]有逆元,则逆元唯一 [a],

证明:
假设逆元不唯一:
设 [ a ] 有 逆 元 [ b 1 ] , [ b 2 ] 设[a]有逆元[b_1],[b_2] [a][b1],[b2]
则 有 : a × b 1 ≡ a × b 2 m o d    n 则有:a\times b_1\equiv a\times b_2 \mod n :a×b1a×b2modn
由 于 ( a , n ) = 1 , 根 据 消 去 律 : b 1 ≡ b 2 m o d    n 由于(a,n)=1,根据消去律:b_1\equiv b_2 \mod n (a,n)=1,:b1b2modn
即 [ b 1 ] = [ b 2 ] 即[b_1]=[b_2] [b1]=[b2]
矛 盾 , 则 [ a ] 的 逆 元 唯 一 矛盾,则[a]的逆元唯一 ,[a]
证 毕 证毕

  • 无 零 因 子 充 要 条 件 : n 为 素 数 ( 显 然 嘛 ) 无零因子充要条件:n为素数(显然嘛) n()

10.群论初步(不是很严谨,看看就好)

定义

在数学中,群表示一个拥有满足封闭性、结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。--------baidu

说的直白点,就是集合+运算

性质

  • 运算封闭性(整数加/减整数依然是整数)
  • 结合律
  • 存在单位元(唯一)
  • 每个数都存在逆元(唯一)

子群,循环群

子群:如果群G的非空子集合H对于G的运算也成一个群,那么H称为G的子群。

用大白话来讲就是H是包含在G中,且有单位元,每个H中的元素都有逆元

若—个群G的每—个元都是G的某—个固定元a的乘方,则称G为循环群,记作G=(a)={am |m∈Z},a称为G的—个生成元。

其实就是说若群里的某个元素可以以乘方的方式来形成其他的元素,那么这就是一个循环群

陪集

陪集是指H是群G的子群,对于某一g∈G,{gh|对于所有h∈H}表示H的一个左陪集,记作gH;{hg|对于所有h∈H}表示H的一个右陪集,记作Hg;也译作傍系,旁集等。

注意,陪集不一定是群,它不一定满足群的性质

拉格朗日定理

对于群G的子群H,满足 ∣ H ∣ |H| H | ∣ G ∣ |G| G(G被H整分)
(不会证)

有限循环群的性质

r ∣ < r > ∣ = 1 r^{|<r>|}=1 r<r>=1

11.初等数论相关定理

欧拉定理

内容

对 于 正 整 数 a , b , 若 ( a , b ) = 1 , 则 有 a φ ( n ) ≡ 1 ( m o d n ) 对于正整数a,b,若(a,b)=1,则有a^{\varphi(n)}\equiv 1\pmod n a,b,(a,b)=1,aφ(n)1(modn)

证明

在 模 n 下 设 群 G 在模n下设群G nG:{ x ∣ ( x , n ) = 1 x|(x,n)=1 x(x,n)=1}
设 群 a 为 G 的 子 群 设群a为G的子群 aG
则 a 中 的 元 素 也 和 n 互 质 则a中的元素也和n互质 an
由于 ∣ < a > ∣ |<a>| <a> | φ ( n ) \varphi(n) φ(n)
得 φ ( n ) = k × ∣ < a > ∣ 得\varphi(n)=k\times |<a>| φ(n)=k×<a>
由 于 a ∣ < a > ∣ = 1 由于a^{|<a>|}=1 a<a>=1
乘 k 次 方 得 a ∣ < a > ∣ × k = 1 乘k次方得 a^{|<a>|\times k}=1 ka<a>×k=1
于 是 a φ ( n ) = 1 于是a^{\varphi(n)}=1 aφ(n)=1
由 于 这 是 在 模 n 下 的 推 导 , 所 以 放 到 一 般 情 况 有 : a φ ( n ) ≡ 1 ( m o d n ) 由于这是在模n下的推导,所以放到一般情况有:a^{\varphi(n)}\equiv 1\pmod n n,:aφ(n)1(modn)
得 证 得证

关于欧拉函数

欧 拉 函 数 的 计 算 : 欧拉函数的计算: :
对 于 n , 将 其 唯 一 分 解 为 ∏ i = 1 n p i k i 对于n,将其唯一分解为 \prod_{i=1}^{n}p_i^{k_i} n,i=1npiki
则 φ ( n ) = n × ∏ i = 1 n ( 1 − 1 p i ) 则\varphi(n)=n\times \prod_{i=1}^{n} (1- \frac{1}{p_i}) φ(n)=n×i=1n(1pi1)

费马小定理

内容

若 p 为 素 数 , a 不 是 p 的 倍 数 , 则 a p ≡ a ( m o d p ) 若p为素数,a不是p的倍数,则a^p\equiv a\pmod p p,ap,apa(modp)

证明

(其实可以用欧拉定理证明,但我偏不干~~)
令 x = 1 × 2 × 3 × . . . . . × ( p − 1 ) 令x=1\times 2\times3\times.....\times(p-1) x=1×2×3×.....×(p1)
令 y = a × 1 × a × 2 × a × 3 × . . . . . × a × ( p − 1 ) 令y=a\times1\times a\times 2\times a\times3\times.....\times a\times(p-1) y=a×1×a×2×a×3×.....×a×(p1)
则 x = ( p − 1 ) ! 且 y = a p − 1 ( p − 1 ) ! 则x=(p-1)!且y=a^{p-1}(p-1)! x=(p1)!y=ap1(p1)!

若是在模p的剩余类下定义x和y,那么有 x = y x= y x=y
即在一般情况下的
x ≡ y ( m o d p ) x\equiv y\pmod p xy(modp)
代 入 x 和 y : ( p − 1 ) ! ≡ a p − 1 × ( p − 1 ) ! ( m o d p ) 代入x和y:(p-1)!\equiv a^{p-1}\times(p-1)!\pmod p xy:(p1)!ap1×(p1)!(modp)
根 据 消 去 律 , 由 于 p 是 素 数 , 故 ( ( p − 1 ) ! , p ) = 1 根据消去律,由于p是素数,故((p-1)!,p)=1 ,p,((p1)!,p)=1
于 是 于是
1 ≡ a p − 1 ( m o d p ) 1\equiv a^{p-1}\pmod p 1ap1(modp)
即 a p ≡ a ( m o d p ) 即a^p\equiv a\pmod p apa(modp)
证 毕 证毕

变形

  • a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod p ap11(modp)
  • a p − 2 × a ≡ 1 ( m o d p ) ( 即 a p − 2 是 a 的 逆 元 ) a^{p-2}\times a\equiv 1\pmod p(即a^{p-2}是a的逆元) ap2×a1(modp)(ap2a)

中国剩余定理

在这里插入图片描述
(不会证明)

12.相关算法

BSGS法

另一篇很牛的数论blog

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AndrewMe8211

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值