求逆元的方法

逆元简介

如果存在x使得a*x ≡ 1 mod ( p ), 我们就说x 是 a 的一个逆元。

拓展欧几里得算法求逆元

首先拓展欧几里得可以解决的问题是 ax + py = 1,这样通过拓展欧几里得算法求解出来的x既为a的逆元。因为对左右同时取模p,就变回了ax≡ 1 mod ( p )。得到的结果通过对x取模p就能的到最小的正逆元,如果需要当然也可以求出来负数逆元。
代码如下:

void exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = -1, y = 0;
    }
    else
    {
        exgcd(b, a%b, y, x);
        y -= (a/b)*x;
    }
}

费马小定理解决求逆元

费马小定理(Fermat’s little theorem)是数论中的一个重要定理,在1636年提出。如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)。

通过对a(p-1)≡1(mod p)进行变换的到,a*ap-2≡1(mod p),所以a的逆元是ap-2,通过快速幂进行求解。但别忘记的时,p必须是一个素数,在做题的时候给出的取模数字有时候可能不是素数,就不能用这种方法进行计算了。

#include <iostream>

using namespace std;
typedef long long ll;
const int mod = prime;

ll qul(ll a, ll b)
{
    ll sum = 1;
    
    while (b)
    {
        if (b&1)
            sum = sum*a%mod;
        
        a = a*a%mod;
        b>>=1;
    }
}

int main()
{
    ll ni = qul(ni, mod-2);
    
    return 0;
}

打表求逆元

首先给出证明。
 在这里插入图片描述
代码如下:

#include <iostream>

using namespace std;

typedef long long ll;
const int MOD = 1e7+9;
ll inv[MOD];

void init()
{
	int[1] = 1;
	
    for (int i=2; i<MOD; i++)
    {
        inv[i] = (MOD - MOD/i)%MOD*ni[MOD%i]%MOD)%MOD;
    }
}

int main()
{
    init();
    
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值