重要的Python库--《利用Python进行数据分析》的学习笔记

本文是基于《利用Python进行数据分析》第2版的学习笔记,涵盖了NumPy、pandas、matplotlib、SciPy、scikit-learn和statsmodels等重要库的介绍。详细介绍了各库的主要功能和应用,如NumPy的数值计算、pandas的数据结构、matplotlib的可视化、SciPy的科学计算、scikit-learn的机器学习以及statsmodels的统计分析。
摘要由CSDN通过智能技术生成

学习《利用Python进行数据分析》第2版,一些笔记将在后续更新

内容引用于《利用Python进行数据分析》第2版,Wes McKinney著,徐敬一译

重要的python库

1. NumPy

http://numpy.org
提供多种数据结构、算法以及大部分涉及python数值计算所需的接口。

2. pandas

提供了高级数据结构和函数。
书中主要使用的pandas对象是DataFrame,主要实现表格化、面向列、使用行列标签的数据结构;Series一种一维标签数组对象。

3. matplotlib

流行用于制图及其他二维数据可视化的python库。

4. SciPy

科学计算领域针对不同标准问题域的包集合。

5. scikit-learn

机器学习工具包,专注于预测。

  1. 分类:SVM、最邻近、随机森林、逻辑回归等
  2. 回归:Lasso、岭回归等
  3. 聚类:k-means、谱聚类等
  4. 降维:PCA、特征选择、矩阵分解等
  5. 模型选择:网格搜索、交叉验证、指标矩阵
  6. 预处理:特征提取、正态化

6. statsmodels

统计分析包,专注于统计推理,提供不确定性评价和p值参数。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值