HDU多校九

总结:
这次题目比较难,没有做出来,但是组内讨论还是很激烈的。赛后认真补题!

1003

题意

有两堆石子,第一堆有 $a 个石头,第二堆有个石头,第二堆有 b个石头。你有两种操作:操作一:从某堆拿任意个石子。操作二:从第一堆拿个石头。你有两种操作:操作一:从某堆拿任意个石子。操作二:从第一堆拿x $个,从第二堆拿 yy个,要求 ∣x−y∣≤k∣x−y∣≤k,其中kk是给定常数。

每个人都是最优策略,让你求是否先手必胜(1)或先手必败(2)

思路

扩展威佐夫博弈

代码

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#define IO ios::sync_with_stdio(0), cin.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf = ~0u >> 1;
typedef pair<int, int> P;
#define REP(i, a, n) for (int i = a; i < (n); ++i)
#define PER(i, a, n) for (int i = (n)-1; i >= a; --i)
const ll mod = 1e9 + 7;
ll gcd(ll T, ll b) { return b == 0 ? T : gcd(b, T % b); }
ll lcm(ll T, ll b) { return T / gcd(T, b) * b; }
const int maxn = 1000002;
ll a[maxn];
void init() {
	a[0]=1;
	for(int i=1;i<=1000000;i++) {
		a[i]=(a[i-1]*i)%mod;
	}
}
template <typename T>
void read(T &x)
{
	x = 0;
	char ch = getchar();
	ll f = 1;
	while (!isdigit(ch))
	{
		if (ch == '-')
			f *= -1;
		ch = getchar();
	}
	while (isdigit(ch))
	{
		x = x * 10 + ch - 48;
		ch = getchar();
	}
	x *= f;
}
int main()
{
    int T;
    cin>>T;
    while(T--){
        int a,b,t;
        cin>>a>>b>>t;
        double k = (double)t;
        if(a > b)swap(a,b);
        double XA = (1.0-k+sqrt(5.0+2*k+k*k))/2;
        double XB = (3.0+k+sqrt(5.0+2*k+k*k))/2;
        int l = 0;
        int r = 100000000;
        while(l < r){
            int mid = l + r >> 1;
            if(floor((double)mid * XA) > a)r = mid - 1;
            else if(floor((double)mid * XA) < a)l = mid + 1;
            else {
                l = mid;
                break;
            }
        }
        if(floor((double)l * XA) == a && floor((double)l * XB) == b)printf("0\n");
        else printf("1\n");
    }
    return 0;
}

1001

题意

您将看到一棵由n个顶点组成的树,这些顶点编号为1到n,根位于节点1。第i个顶点的父节点是pi。可以从顶点移动到其任何子顶点。此外,你可以在任何两个不同的顶点之间添加一条有向边,你也可以通过这条边移动。您需要最大化对数(x,y),这样x可以在添加边后通过边移动到y。注意x也可以移动到x。

思路

把一个点连向根节点,比其他更优。因为连向根节点后,该点可以到达所有点。对于同一条链上的点,叶子结点连到根节点,比链上其他点更优,因为前者包含后者。所以最优解是某个叶子结点连向根节点,那么这条路径上的点给予的权值就会变成n,dfs求出所有答案取最大值即可。

代码

#include<bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false),cin.tie(0);
#define ll long long
#define inf 0x3f3f3f3f
const int N=5e5+5;
//set<string>b;
//set<string>::iterator it;
ll ans,sum,n;
ll f[N],a[N],b[N];
vector<ll>v[N];
void dfs(ll x)
{
	a[x]=1;
	b[x]=b[f[x]]+1;
	ll i;
	for(i=0;i<v[x].size();i++)
	{
		dfs(v[x][i]);
		a[x]+=a[v[x][i]];
	}
	sum+=a[x];
}
void dfs1(ll x,ll y)
{
	ans=max(ans,y);
	ll i;
	for(i=0;i<v[x].size();i++)
	{
		dfs1(v[x][i],y+n-a[v[x][i]]);
	}
}
int main()
{
	IO;
	int T;
	ll i; 
	cin>>T;
	while(T--)
	{
		sum=0;ans=0;
		cin>>n;
		for(i=2;i<=n;i++)
		{
			cin>>f[i];
			v[f[i]].push_back(i);
		}
		dfs(1);
		dfs1(1,sum);
		for(i=1;i<=n;i++)
		{
			v[i].clear();
		}
		cout<<ans<<endl;
	}
    return 0;
}


1002

题意

w(n)表示n的质因子个数按题目要求求出f(n)。

思路

利用这个式子加些常数优化递归求解既可。

代码

#include <bits/stdc++.h>
#define ll long long
#define PII pair<int,int>
#define ls x<<1
#define rs x<<1|1
#define fi first
#define se second
#define pb push_back
#define inf 0x3f3f3f3f
using namespace std;
const int N=5e6+10;#include <bits/stdc++.h>
using namespace std;
const int N = 1e7 + 5, P = 1e9 + 7, Inv2 = (P + 1) / 2;
typedef long long ll;
struct Data {
    int d, m, w, id;
};
int n, m, q, Ans[10005];
int is[N], prime[N], f[N], g[N];
vector<Data> Q;
int main() {
    n = 1e7;
    f[1] = g[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!is[i])
            prime[++prime[0]] = i, f[i] = 2, g[i] = P - Inv2;
        for (int j = 1, x; j <= prime[0] && (x = i * prime[j]) <= n; ++j) {
            is[x] = 1;
            if (i % prime[j])
                f[x] = 2 * f[i] % P, g[x] = (ll)g[prime[j]] * g[i] % P;
            else {
                f[x] = f[i];
                break;
            }
        }
    }
    scanf("%d", &q);
    for (int T = 1; T <= q; ++T) {
        scanf("%d%d", &n, &m);
        int t = n;
        vector<int> div;
        for (int d = 2; d * d <= t; ++d)
            if (t % d == 0) {
                div.push_back(d);
                while (t % d == 0)
                    t /= d;
            }
        if (t != 1)
            div.push_back(t);
        for (int s = 0; s < (1 << div.size()); ++s) {
            int d = 1;
            for (int i = 0; i <= (int)div.size() - 1; ++i)
                if (s & (1 << i))
                    d *= div[i];
            if (m < d || !g[d])
                continue;
            Q.push_back({d, (m / d) * d, int((ll)f[n] * g[d] % P), T});
        }
    }
    sort(Q.begin(), Q.end(),
         [](Data a, Data b) { return a.d == b.d ? a.m < b.m : a.d < b.d; });
    ll w;
    int d = 0, i;
    for (auto t : Q) {
        if (t.d != d)
            d = i = t.d, w = 0;
        for (; i <= t.m; i += d)
            w += f[i];
        Ans[t.id] = (Ans[t.id] + (ll)t.w * (w %= P) % P) % P;
    }
    for (int i = 1; i <= q; ++i)
        printf("%d\n", Ans[i]);
    return 0;
}



一级目录

题意

思路

代码

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页