熟悉 Python 数据分析的工具
了解数据分析的常用工具
目前主流的数据分析工具语言有 Python、R、MATLAB 这3种。下图是这三种语言的对比:
\ | Python | R | MATLAB |
---|---|---|---|
语言学习难易程度 | 接口统一,学习曲线平缓 | 接口众多,学习曲线陡峭 | 自由度大,学习曲线较为平缓 |
使用场景 | 数据分析、机器学习、矩阵运算、科学数据可视化、数字图像处理、Web 应用、网络爬虫、系统运维等 | 统计分析、机器学习、科学数据可视化等 | 矩阵运算、数值分析、科学数据可视化、机器学习、分号计算、数字图像处理、数字信号处理、仿真模拟等 |
第三方支持 | 拥有大量的第三方库,能够简便调用 C、C++、Foetran、Java 等其他编程语言 | 拥有大量的包,能够调用 C、C++、Fortran、Java 等其他程序语言 | 拥有大量专业的工具箱,在新版本中加入了对 C、C++、Java 的支持 |
流行领域 | 工业界>学术界 | 工业界≈学术界 | 工业界≤学术界 |
软件成本 | 开源免费 | 开源免费 | 商业收费 |
了解 Python 数据分析的优势
- 语法简单精练。
- 有很多功能强大的库。
- 功能强大。从特性观点来看,Python 是一个混合体。丰富的工具集使它介于传统的脚本语言和系统语言之间。Python 不仅具备所有脚本语言简单和易用的特点,还提供了编译语言所具有的高级软件工程工具。
- 不仅使用于研究和原型构建,同时也适用于构建生产系统。研究人员和工程技术人员使用同一种编程工具,会给企业带来非常显著的组织效益,并降低企业的运营成本。
- Python 是一门胶水语言。Python 程序能够以多种方式轻易地与其他语言的组件“粘接”在一起。例如,Python 的 C 语言 API 可以帮助 Python 程序灵活地调用 C 程序。这意味着用户可以根据需要给 Python 程序添加功能,或者在其他环境系统中使用 Python。
Python 数据分析常用类库
- IPython
- NumPy
- SciPy
- pandas
- Matplotlib
- scikit-learn
- Spyder