torch指定显卡and指定显卡仍无效

torch的一些初始化仍然要用第0块显卡,在代码中使用.cuda('cuda:1') 或者to.device('cuda:1') 时,torch仍然会用第0块显卡来初始化。
解决方法:
(1)该方法要在import torch 之前,更新版本也可能发生变化

import os 
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids 

(2) 在命令行中执行代码时指定

CUDA_VISIBLE_DEVICES=gpu_ids python3 train.py

说实话以上方法不一定哪一个有用。

<think>嗯,用户遇到了NVIDIA 5090显卡在Whisper环境中无法使用的问题。首先,我得考虑可能的原因。通常,新显卡刚发布时,驱动和软件支持可能还不完善。Whisper依赖PyTorch或TensorFlow,这些框架需要对应的CUDA版本支持。如果5090是新一代的显卡,可能需要更新的CUDA版本,而用户当前的PyTorch可能还没适配。 接下来,我应该检查用户是否安装了适合的显卡驱动。最新的显卡通常需要最新的驱动版本,比如535以上。然后,CUDA工具包是否兼容5090?如果NVIDIA还没有为5090发布对应的CUDA版本,用户可能需要等待更新。另外,PyTorch或TensorFlow可能尚未添加对该显卡的支持,可能需要从源码编译或者使用nightly版本。 用户的环境配置也需要检查,比如是否正确安装了CUDA和cuDNN,环境变量是否设置正确。虚拟环境有时候会出问题,比如路径错误,导致框架找不到CUDA库。此外,Whisper本身是否有已知的兼容性问题,或者用户是否安装了正确的版本?可能需要升级Whisper到最新版,或者查看GitHub上的issue。 还有,用户是否尝试过强制使用CUDA?比如在代码中指定device为cuda:0。有时候框架可能默认使用CPU,需要显式启用GPU。另外,运行一个简单的PyTorch测试脚本,比如创建张量并转移到GPU,可以确认是否是框架层面的问题。 最后,如果以上步骤都无效,可能需要联系NVIDIA支持,或者等待框架和驱动更新。同时,用户也可以尝试使用Docker镜像,有些预配置的环境可能已经包含必要的依赖。</think>### 解决方案:NVIDIA 5090显卡在Whisper环境下无法使用的问题 #### 1. 确认显卡驱动兼容性 - **步骤**:检查NVIDIA驱动版本是否支持RTX 5090(建议535.xx或更高版本) - **代码验证**: ```bash nvidia-smi # 输出右上角显示Driver Version ``` - **说明**:若驱动版本过旧,需从[NVIDIA官网](https://www.nvidia.com/Download/index.aspx)下载最新驱动[^1] #### 2. 验证CUDA工具链兼容性 - **步骤**:确认CUDA版本与RTX 5090的架构匹配 - **关键命令**: ```bash nvcc --version # 查看CUDA编译器版本 cat /usr/local/cuda/version.txt ``` - **注意**:若使用conda虚拟环境,需检查环境内CUDA版本与系统级CUDA的兼容性[^2] #### 3. PyTorch/TensorFlow适配性处理 - **推荐方案**: ```bash # 安装PyTorch nightly版本(含新架构支持) pip install --pre torch torchaudio -f https://download.pytorch.org/whl/nightly/cu121/torch_nightly.html ``` - **验证代码**: ```python import torch print(torch.cuda.is_available()) # 应输出True print(torch.cuda.get_device_name(0)) # 应显示RTX 5090 ``` #### 4. Whisper版本强制配置 - **环境变量设置**: ```bash export WHISPER_CUDA_FORCE=1 # 强制启用CUDA加速 export PATH=/usr/local/cuda-12.1/bin:$PATH # 显式指定CUDA路径 ``` - **版本升级建议**: ```bash pip install git+https://github.com/openai/whisper.git # 安装最新开发版 ``` #### 5. Docker容器化方案 - **推荐镜像**: ```dockerfile FROM nvcr.io/nvidia/pytorch:23.09-py3 RUN pip install git+https://github.com/openai/whisper.git ``` - **启动命令**: ```bash docker run --gpus all -it --rm whisper-container ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值