torch 指定显卡

1. 代码中指定

import os 
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids 

2. shell中指定

export CUDA_VISIBLE_DEVICES=gpu_ids && python3 train.py

3. 模型/参数中指定

model.cuda(gpu_id) # gpu_id为int类型变量,只能指定一张显卡
model.cuda('cuda:'+str(gpu_ids)) #输入参数为str类型,可指定多张显卡
model.cuda('cuda:1,2') #指定多张显卡的一个示例

model.cuda(1)
loss.cuda(1)
tensor.cuda(1)

torch.cuda.set_device(gpu_id) #单卡
torch.cuda.set_device('cuda:'+str(gpu_ids)) #可指定多卡

torch.cuda.set_device()的优先级低:如果model.cuda()中指定了参数,那么torch.cuda.set_device()会失效,而且pytorch的官方文档中明确说明,不建议用户使用该方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值