原始代码指定显卡位置在ltr/trainers/base_trainer.py
self.device = getattr(settings, 'device', None)
# print("11111", self.device)
# breakpoint()
if self.device is None:
self.device = torch.device("cuda:0" if torch.cuda.is_available() and settings.use_gpu else "cpu")
在进行算法配置时,使用0号卡往往会使电脑使用十分卡顿,训练时最好使用其他卡,当算法直接进行如下修改:
self.device = getattr(settings, 'device', None)
# print("11111", self.device)
# breakpoint()
if self.device is None:
self.device = torch.device("cuda:1" if torch.cuda.is_available() and settings.use_gpu else "cpu")
会报如下错误:
RuntimeError: CUDA error: an illegal memoryaccess was encountered
原因:
这个错误通常是由于在CUDA中访问不允许访问的内存地址引起的。可能是代码在GPU上执行期间尝试访问超出GPU内存范围的某个位置。
故不建议直接修改CUDA。
解决办法:
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # 设置使用的GPU编号
torch.cuda.set_device(1) # 设置默认的GPU设备
self.device = torch.device("cuda" if torch.cuda.is_available() and settings.use_gpu else "cpu")