Pytracking框架算法不能设置默认显卡(cuda)问题

 原始代码指定显卡位置在ltr/trainers/base_trainer.py

self.device = getattr(settings, 'device', None)
        # print("11111", self.device)
        # breakpoint()
        if self.device is None:
            self.device = torch.device("cuda:0" if torch.cuda.is_available() and settings.use_gpu else "cpu")

在进行算法配置时,使用0号卡往往会使电脑使用十分卡顿,训练时最好使用其他卡,当算法直接进行如下修改:

self.device = getattr(settings, 'device', None)
        # print("11111", self.device)
        # breakpoint()
        if self.device is None:
            self.device = torch.device("cuda:1" if torch.cuda.is_available() and settings.use_gpu else "cpu")

会报如下错误: 

RuntimeError: CUDA error: an illegal memoryaccess was encountered

 

原因:

       这个错误通常是由于在CUDA中访问不允许访问的内存地址引起的。可能是代码在GPU上执行期间尝试访问超出GPU内存范围的某个位置。

      故不建议直接修改CUDA。

解决办法:



if torch.cuda.is_available():
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"  # 设置使用的GPU编号
    torch.cuda.set_device(1)  # 设置默认的GPU设备

self.device = torch.device("cuda" if torch.cuda.is_available() and settings.use_gpu else "cpu")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值