YCOJ逃生

本文介绍了一款逃生游戏的算法策略,玩家需要在限定血量和生命值上限的情况下,通过收集地图上的药剂和避免火焰,从四个可能的出口之一逃离。文章详细解释了如何使用动态规划算法来计算最佳逃生路径,以获得最高的剩余血量。
摘要由CSDN通过智能技术生成

逃生

Description

小信在玩一款逃生的游戏。在一个 n×m 的矩形地图上,小信位于其中一个点。地图上每个格子有加血的药剂,和掉血的火焰,药剂的药效不同,火焰的大小也不同,每个格子上有一个数字,如果格子上的数字是正数说明是一个药剂代表增加的生命值,如果是负数说明是火焰代表失去的生命值。

小信初始化有 v 点血量,他的血量上限是 c,任何时刻他的生命值都不能大于血量上限,如果血量为 0 则会死亡,不能继续游戏。

矩形地图上的四个角(1,1),(1,m),(n,1),(n,m)为游戏的出口。游戏中只要选定了一个出口,就必须朝着这个方向走。例如,选择了左下的出口,就只能往左和下两个方向前进,选择了右上的出口,就只能往右和上两个方向前进,左上和右下方向的出口同理。

如果成功逃生,那么剩余生命值越高,则游戏分数越高。为了能拿到最高分,请你帮忙计算如果成功逃生最多能剩余多少血量,如果不能逃生输出 -1。

Input

第一行依次输入整数 n,m,x,y,v,c(1<n,m≤1000,1≤x≤n,1≤y≤m,1≤v≤c≤10000), 其中 n,m 代表地图大小,(x,y) 代表小信的初始位置,v 代表小信的初始化血量,c 代表小信的生命值上限。

接下来 n 行,每行有 m 个数字,代表地图信息。(每个数字的绝对值不大于100,地图中小信的初始位置的值一定为 0)

Output

一行输出一个数字,代表成功逃生最多剩余的血量,如果失败输出 -1。

Sample Input 1

4 4 3 2 5 10
1 2 3 4
-1 -2 -3 -4
4 0 2 1
-4 -3 -2 -1
Sample Output 1

10

——摘自YCOJ
一道代码很长,但想通了,找到规律,就不是那么难了
一道DP,题意大致是告诉我们一张图,有加血的药剂,和掉血的火焰,让我们求出走到终点最大生命值。
所以,我们只要找出四个点的值,在进行max比较,求出大的值,即为答案。
在这里插入图片描述
因此,样例10就是这样得来的:
在这里插入图片描述
当然,别忘了题里的一句话:
例如,选择了左下的出口,就只能往左和下两个方向前进,选择了右上的出口,就只能往右和上两个方向前进,左上和右下方向的出口同理。

也就是说,当小信选择了一个出口,他就只能走那两个方向。
同理:
在这里插入图片描述
那么,我们可以这样看:
在这里插入图片描述
不过如果他的血量超过了上限,但还加,他岂不无敌?
所以我们应当有所判断。
在这里插入图片描述
首先定义一个函数

void esc(int ads){

}

然后在函数里确定方向:
左上角

	if(ads==1){
		for(int i = x - 1; i >= 1; i--){
			for(int j = y - 1; j >= 1; j--){
				 cnt1=dp[i + 1][j] + a[i][j];
				 cnt2=dp[i][j + 1] + a[i][j];
				if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
				if(dp[i][j]>c)
				dp[i][j] = c;
				if(dp[i][j] <= 0) 
				dp[i][j] =-0x3f3f3f3f;
			}
		}

左下角

}else if(ads==2){
			for(int i = x+1; i <=n; i++){
			for(int j = y - 1; j >= 1; j--){
				 cnt1=dp[i-1][j]+a[i][j];
				 cnt2=dp[i][j+1]+a[i][j];
				if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
				if(dp[i][j]>c)
				dp[i][j] = c;
				if(dp[i][j] <= 0) 
				dp[i][j] =-0x3f3f3f3f;
			}
		}

右上角

}else if(ads==3){
		for(int i = x - 1; i >= 1; i--){
				for(int j = y + 1; j <= m; j++){
					cnt1 = dp[i + 1][j] + a[i][j];
					cnt2 = dp[i][j-1] + a[i][j];
						if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
					if(dp[i][j] > c){
					dp[i][j] = c;
				}
                  	if(dp[i][j] <= 0) {
					  dp[i][j] = -0x3f3f3f3f;
				    }
				}
			}	

右下角

}else if(ads==4){
			for(int i = x + 1; i <= n; i++){
				for(int j = y + 1; j <= m; j++){
					cnt1 = dp[i - 1][j] + a[i][j];
					cnt2 = dp[i][j-1] + a[i][j];
								if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
							if(dp[i][j] > c){
					dp[i][j] = c;
				}
                  	if(dp[i][j] <= 0) {
					  dp[i][j] = -0x3f3f3f3f;
				    }
				}
			}
		}
    }

嗯,然后呢?
对,开始main()函数主体:
输入图:

	cin >> n>>m>>x>>y>>v>>c;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			cin >> a[i][j];
		}
	}

调用函数:

or(int i = x-1;i>=1; i--){
		dp[i][y] = dp[i + 1][y] + a[i][y];
	}
	for(int i = x + 1; i <= n; i++){
		dp[i][y] = dp[i - 1][y] + a[i][y];
	}
	for(int i = y - 1; i >= 1; i--){
		dp[x][i] = dp[x][i + 1]+a[x][i];
	}
	for(int i = y + 1; i <= m; i++){
		dp[x][i] = dp[x][i - 1] + a[x][i];
	}
		for(int i = 1; i <= 4; i++){
		esc(i);
	}

maxn赋极小值:

	maxn = -0x3f3f3f3f;

找终点的最大值,直接调用max函数,并把值赋给maxn:

maxn=max(dp[1][1],maxn);

	maxn=max(dp[1][m],maxn);

	maxn=max(dp[n][1],maxn);

	maxn=max(dp[n][m],maxn);

然后,直接输出?
当然不是。
还要判断他到终点之前还有没有血量。

if(maxn>0){
	cout << maxn;
}else{
	cout << "-1";
} 

实在坑细节啊。
整体代码:

#include<bits/stdc++.h>
using namespace std;
 
int maxn;
int n,m,x,y,v,c;
int a[1000][1000];
int dp[1000][1000];
int cnt1,cnt2;
void esc(int ads){
	if(ads==1){
		for(int i = x - 1; i >= 1; i--){
			for(int j = y - 1; j >= 1; j--){
				 cnt1=dp[i + 1][j] + a[i][j];
				 cnt2=dp[i][j + 1] + a[i][j];
				if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
				if(dp[i][j]>c)
				dp[i][j] = c;
				if(dp[i][j] <= 0) 
				dp[i][j] =-0x3f3f3f3f;
			}
		}

	}else if(ads==2){
			for(int i = x+1; i <=n; i++){
			for(int j = y - 1; j >= 1; j--){
				 cnt1=dp[i-1][j]+a[i][j];
				 cnt2=dp[i][j+1]+a[i][j];
				if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
				if(dp[i][j]>c)
				dp[i][j] = c;
				if(dp[i][j] <= 0) 
				dp[i][j] =-0x3f3f3f3f;
			}
		}
	}else if(ads==3){
		for(int i = x - 1; i >= 1; i--){
				for(int j = y + 1; j <= m; j++){
					cnt1 = dp[i + 1][j] + a[i][j];
					cnt2 = dp[i][j-1] + a[i][j];
						if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
					if(dp[i][j] > c){
					dp[i][j] = c;
				}
                  	if(dp[i][j] <= 0) {
					  dp[i][j] = -0x3f3f3f3f;
				    }
				}
			}	
		}else if(ads==4){
			for(int i = x + 1; i <= n; i++){
				for(int j = y + 1; j <= m; j++){
					cnt1 = dp[i - 1][j] + a[i][j];
					cnt2 = dp[i][j-1] + a[i][j];
								if(cnt1>cnt2){
					dp[i][j]=cnt1;
				}else{
					dp[i][j]=cnt2;
				}
							if(dp[i][j] > c){
					dp[i][j] = c;
				}
                  	if(dp[i][j] <= 0) {
					  dp[i][j] = -0x3f3f3f3f;
				    }
				}
			}
		}
    }
int main(){
	cin >> n>>m>>x>>y>>v>>c;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			cin >> a[i][j];
		}
	}
	dp[x][y] = v;
		for(int i = x-1;i>=1; i--){
		dp[i][y] = dp[i + 1][y] + a[i][y];
	}
	for(int i = x + 1; i <= n; i++){
		dp[i][y] = dp[i - 1][y] + a[i][y];
	}
	for(int i = y - 1; i >= 1; i--){
		dp[x][i] = dp[x][i + 1]+a[x][i];
	}
	for(int i = y + 1; i <= m; i++){
		dp[x][i] = dp[x][i - 1] + a[x][i];
	}
		for(int i = 1; i <= 4; i++){
		esc(i);
	}
	
	maxn = -0x3f3f3f3f;

maxn=max(dp[1][1],maxn);

	maxn=max(dp[1][m],maxn);

	maxn=max(dp[n][1],maxn);

	maxn=max(dp[n][m],maxn);
	
if(maxn>0){
	cout << maxn;
}else{
	cout << "-1";
} 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值