《模式识别》课本一个小推导

对于一个二分类 { ω 1 \{ \omega_1 {ω1, ω 2 } \omega_2\} ω2}问题,我们记将属于第一类 ω 1 \omega_1 ω1样本 x x x误分类成 ω 2 \omega_2 ω2的概率为 P 1 ( e ) = ∫ R 2 p ( x ∣ ω 1 ) d x P_1(e) = \int _{\R_2}p(x|\omega_1)dx P1(e)=R2p(xω1)dx
,同理,将属于第一类 ω 1 \omega_1 ω1样本 x x x误分类成 ω 2 \omega_2 ω2的概率为
P 2 ( e ) = ∫ R 1 p ( x ∣ ω 2 ) d x P_2(e) = \int _{\R_1}p(x|\omega_2)dx P2(e)=R1p(xω2)dx
我们现在希望 P 1 P_1 P1, P 2 P_2 P2都尽可能小,但在实际优化过程中我们一般采用固定一个错误率,尽可能减少另一个错误的方式建模。
所以,现在我们得到一个具有约束的优化问题,即:
m i n   P 1 ( e ) s . t .   P 2 ( e ) − ϵ 0 = 0 min \ P_1(e) \\ s.t. \ P_2(e) - \epsilon_0 = 0 min P1(e)s.t. P2(e)ϵ0=0
其中, ϵ 0 \epsilon_0 ϵ0为一个尽可能小的数。
我们可以构造拉格朗日函数
L ( λ , x ) = P 1 ( x ) + λ ( P 2 ( x ) − ϵ 0 ) = ∫ R 2 p ( x ∣ ω 1 ) d x + λ ( ∫ R 1 p ( x ∣ ω 2 ) d x − ϵ 0 ) = 1 − ∫ R 1 p ( x ∣ ω 1 ) d x + λ ( ∫ R 1 p ( x ∣ ω 2 ) d x − ϵ 0 ) = ( 1 − λ ϵ 0 ) + ∫ R 1 ( λ p ( x ∣ ω 2 ) − p ( x ∣ ω 1 ) ) d x \begin{array}{lr} L( \lambda,x)&\\ = P_1(x)+\lambda (P_2(x)-\epsilon_0)& \\ = \int _{\R_2}p(x|\omega_1)dx+\lambda (\int _{\R_1}p(x|\omega_2)dx-\epsilon_0)& \\ =1- \int _{\R_1}p(x|\omega_1)dx +\lambda (\int _{\R_1}p(x|\omega_2)dx-\epsilon_0)& \\ =(1- \lambda \epsilon_0) + \int _{\R_1}(\lambda p(x|\omega_2) - p(x|\omega_1))dx& \end{array} L(λ,x)=P1(x)+λ(P2(x)ϵ0)=R2p(xω1)dx+λ(R1p(xω2)dxϵ0)=1R1p(xω1)dx+λ(R1p(xω2)dxϵ0)=(1λϵ0)+R1(λp(xω2)p(xω1))dx
此时我们的目标转化为:
m i n   L ( λ , x ) \begin{array}{lr} {min \ L(\lambda , x)}& \\ & \end{array} min L(λ,x)

L L L求偏导得到
{ λ = p ( x ∣ ω 1 ) p ( x ∣ ω 2 ) ∫ R 1 p ( x ∣ ω 2 ) d x =   ϵ 0 \left\{ \begin{array}{lr} \lambda = \dfrac{p(x|\omega_1)}{p(x|\omega_2)}& \\ \\ \int _{\R_1}p(x|\omega_2)dx = \ \epsilon_0& \end{array} \right. λ=p(xω2)p(xω1)R1p(xω2)dx= ϵ0

由于很难找到 λ \lambda λ的一个解析表达式,我们采用数值解法进行求解。我们定义似然比
l ( x ) = p ( x ∣ ω 1 ) p ( x ∣ ω 2 ) l(x) = \dfrac{p(x|\omega_1)}{p(x|\omega_2)} l(x)=p(xω2)p(xω1)

对于 ∀ x ∈ R 1 ∪ R 2 , l ( x ) → ( 0 , + ∞ ) \forall x \in \R_1 \cup \R_2,l(x) \to(0,+\infty) xR1R2,l(x)(0,+),当 ∀ x ∈ R 1 \forall x \in \R_1 xR1时, l ( x ) ∈ ( 0 , λ ) l(x) \in (0,\lambda) l(x)(0,λ)。由于似然函数严格单调,不妨设单调递增,则似然函数必然存在反函数 l − 1 ( x ) l^{-1}(x) l1(x),根据连续随机变量函数的分布,我们可以得到,
p ( x ∣ ω 2 ) d x → p ( l ( x ) ∣ ω 2 ) l ′ ( x ) d x = p ( l ( x ) ∣ ω 2 ) d l \begin{array}{lr} p(x|\omega_2)dx& \\ \to p(l(x)|\omega_2)l'(x)dx& \\ = p(l(x)|\omega_2)dl& \end{array} p(xω2)dxp(l(x)ω2)l(x)dx=p(l(x)ω2)dl
我们定义似然比密度函数为 p ( l ( x ) ∣ ω 2 ) p(l(x)|\omega_2) p(l(x)ω2),所以
P 2 ( e ) = 1 − ∫ 0 λ p ( l ( x ) ∣ ω 2 ) d l P_2(e) = 1 - \int_0 ^{\lambda} p(l(x)|\omega_2)dl P2(e)=10λp(l(x)ω2)dl

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值