似然函数与概率密度函数的区别

在统计学中似然函数(Likelihood function)与概率密度函数(Probability density function)都扮演着重要的角色。本文针对的是其在参数估计(Parameter estimation)中的应用。   现代估计理论在许多设计用来提取信息的电子信号处理系统中都可以找到,这些系统包括   在所有的这些系统中,我们都将面对根据连续时间
摘要由CSDN通过智能技术生成

条件概率密度 p(x|θ) p ( x | θ ) 与似然函数 p(x;θ) p ( x ; θ ) 有着千丝万缕的关系,两者所表示的意义不同,但是大多数情况下,两者数值上是相等的(量纲不等)。而在有些时候,两者数值又是不等的。

1. 引入

现代估计理论在许多设计用来提取信息的电子信号处理系统中随处可见,这些系统包括雷达信号处理、声纳、蜂窝网络等。



在所有的这些系统中,我们都将面对根据连续时间波形(观测数据)提取参数的问题,由于使用数字计算机来采样并储存连续时间波形,因此该问题就等价于从离散时间波形或一组数据集中提取参数的问题。从数学概念上来说,我们有 N N 个数据的数据集 x = { x [ 0 ] , x [ 1 ] , , x [ N 1 ] } , 它与未知参数 θ θ 有关,我们希望根据数据来确定 θ θ ,定义如下的估计量

θ^=g(x)(30) (30) θ ^ = g ( x )

其中 g g 表示 RNR R N → R 的映射,这就是 参数估计问题

2. 问题描述

那么如何从根据观测量来确定估计量呢? 在确定好的估计量时,第一步就是建立数学模型。由于数据固有的随机性,我们用它的概率密度函数(Probability density function,PDF)来描述它,即 p(x[0],x[1],,x[N1];θ) p ( x [ 0 ] , x [ 1 ] , ⋯ , x [ N − 1 ] ; θ ) ,或 p(x;θ) p ( x ; θ ) 。这是一个以 θ θ 为未知参数的函数,即我们有一族(cluster)PDF,其中的每一个PDF由于 θ θ 的不同而不同。因此,我们使用“分号”来表示这种关系。注意,这里的自变量是 θ θ 。此外, θ θ 可以是单变量,也可以是多变量。

为了方便理解,我们假设是单变量的情况,并且 θ θ 与观测量 x x 之间的关系表示如下

p(x[0];θ)=12πσ2exp[12σ2(x[0]θ)2](2) (2) p ( x [ 0 ] ; θ ) = 1 2 π σ 2 exp ⁡ [ − 1 2 σ 2 ( x [ 0 ] − θ ) 2 ]

如图所示,由于 θ
  • 17
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值