Task7 投票法

集成学习(中) Task7 投票法的思路

投票法的思想来源来自于我们日常常见的“少数服从多数”,对于参与这次“研讨会”的每一个机器学习模型,对同一个“分类”问题都有有一个看法,我们统计所有模型的投票结果,被多次认同的结果,作为这个融合模型的最终结果。这就是集成学习中的投票法想法来源。

对于回归模型来说,投票法最终的预测结果是多个其他回归模型预测结果的平均值。

对于分类模型,硬投票法的预测结果是多个模型预测结果中出现次数最多的类别,软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标签。

常见的投票策略

  • 绝对多数投票法
    这种策略的想法很简单,就是单纯的超过半数的结果,就视为是最终的结果。
    即:
    在这里插入图片描述

  • 相对多数投票法
    H ( x ) = c a r g M A X j ∑ i = 1 T h i j ( x ) H(x) = c_{argMAX j} \sum_{i=1}^{T}h_{i}^{j}(x) H(x)=cargMAXji=1T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值