集成学习(中) Task7 投票法的思路
投票法的思想来源来自于我们日常常见的“少数服从多数”,对于参与这次“研讨会”的每一个机器学习模型,对同一个“分类”问题都有有一个看法,我们统计所有模型的投票结果,被多次认同的结果,作为这个融合模型的最终结果。这就是集成学习中的投票法想法来源。
对于回归模型来说,投票法最终的预测结果是多个其他回归模型预测结果的平均值。
对于分类模型,硬投票法的预测结果是多个模型预测结果中出现次数最多的类别,软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标签。
常见的投票策略
-
绝对多数投票法
这种策略的想法很简单,就是单纯的超过半数的结果,就视为是最终的结果。
即:

-
相对多数投票法
H ( x ) = c a r g M A X j ∑ i = 1 T h i j ( x ) H(x) = c_{argMAX j} \sum_{i=1}^{T}h_{i}^{j}(x) H(x)=cargMAXji=1∑T

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



