链式法则 理解应用

链式法则是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法。复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。

为啥提链式法则,因为这对深度学习,神经网络的参数求解计算起着绝对的影响作用,之前提过神经网络中基本使用了梯度下降法进行参数优化求解,具体关于神经网络的基本组成单元感知机,神经网络是很多感知机根据复杂的连接关系构成,所以详细可以看看感知机的梯度下降求解参数过程就能知道神经网络中每个感知机的参数求解了。

因为感知机的函数关系很简单,可以直接求解,但是神经网络是很多层感知机连接在一起,第一层感知机把数据信息传递给下一层,于是这样的关于我们最终的损失函数Loss和第一层或者第二层(针对多层神经网络)的感知机的参数求解就很麻烦了,于是我们需要利用微积分中的链式法则求解层层参数关系的导数计算。

一、链式法则

链式法则是将复杂函数进行简单化,其基本表达关系如下:
在这里插入图片描述

二、举个栗子

比如函数

y=(2x+e^x)^2

关于y的导函数的计算,咋一看好像很复杂,但根据链式法则就是

y=u^2
u=2x+e^x
dy/du=2u
du/dx=2+e^x
于是
dy/dx=(dy/du)*(du/dx)
=(2u)*(2+e^x)
=(2*(2x+e^x))*(2+e^x)

这样就是把复杂函数化简成我们熟知的常见导函数形式。

三、常见的导函数求解公式表

顺便贴一下。
在这里插入图片描述

链式求导法则是求解复合函数导数的一种方法,它可以用于求解高阶偏导数。在使用链式求导法则求解二阶偏导数时,我们需要先求解一阶偏导数,然后再对一阶偏导数进行求导。 具体来说,对于一个函数f(x1, x2, ..., xn),其通过多个函数组合得到,即f(g1(x1, x2, ..., xn), g2(x1, x2, ..., xn), ..., gm(x1, x2, ..., xn))。假设每个函数gi都可导,那么根据链式求导法则,我们可以通过以下步骤求解二阶偏导数: 1. 首先,对于每个变量xi,计算f对gi的一阶偏导数,即∂f/∂gi。 2. 接下来,对于每个变量xi和xj,计算f对gi的一阶偏导数关于xj的偏导数,即∂^2f/∂xj∂gi。 3. 最后,对于每对变量xi和xj,计算f对gi的一阶偏导数关于xi和xj的偏导数,即∂^2f/∂xi∂xj。 需要注意的是,这里的gi可以是直接与变量xi相关的函数,也可以是通过其他变量组合得到的函数。通过这个方法,我们可以求解复杂函数的二阶偏导数。 引用中提到的对x求偏导的示例可以帮助我们理解链式求导法则的应用。对于fx = x^Tx,其中x是一个向量,我们可以将其写为fx = g(x)^Tg(x),其中g(x) = x。根据链式求导法则,我们先求解一阶偏导数∂f/∂g(x),得到∂f/∂g(x) = 2g(x)。然后,我们对一阶偏导数进行求导,得到二阶偏导数∂^2f/∂x^2 = 2。 因此,链式求导法则可以用于求解复合函数的二阶偏导数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [深度之眼(十八)——偏导数与矩阵的求导](https://blog.csdn.net/m0_52592798/article/details/126027585)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值